RESUMO
Rheumatoid arthritis(RA), as a chronic autoimmune disease, has a high incidence and disability rate, causing significant suffering to patients. Due to its complex pathogenesis, it has not been fully elucidated to date, and its treatment remains a challenging problem in the medical field. Although western medicine treatment options have certain efficacy, they require prolonged use and are expensive. Additionally, they carry risks of multiple infections and adverse reactions like malignancies. The Chinese herbal medicine Rhododendron molle is commonly used in folk medicine for its properties of dispelling wind, removing dampness, calming nerves, and alleviating pain in the treatment of diseases like rheumatic bone diseases. In recent years, modern clinical and pharmacological studies have shown that the diterpenoids in R. molle are effective components, exhibiting immune-regulatory, anti-inflammatory, and analgesic effects. This makes it a promising candidate for treating RA with a broad range of potential applications. However, R. molle has certain toxic properties that hinder its clinical application and lead to the wastage of its resources. This study reviewed recent research progress on the mechanism of R. molle in preventing and treating RA, focusing on its chemical components, anti-inflammatory and analgesic properties and summarized the adverse reactions associated with R. molle, aiming to offer new ideas for finding natural remedies for RA and methods to reduce toxicity while enhancing the effectiveness of R. molle. The study seeks to clarify the safety and efficacy of R. molle and its extracts, providing a theoretical basis for its application prospects and further promoting the development and utilization of R. molle resources.
Assuntos
Artrite Reumatoide , Diterpenos , Rhododendron , Humanos , Rhododendron/química , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios , Diterpenos/farmacologia , AnalgésicosRESUMO
BACKGROUND AND OBJECTIVES: Qingbutongluo pill (QBTLP), a Chinese herbal preparation, has been developed to treat brucellosis for many years with a good therapeutic effect. This study preliminarily explored its potential molecular mechanisms against brucellosis through network pharmacology. METHODS: The active ingredients of QBTLP were screened out mainly from the Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and their potential targets were predicted through the PubChem database and Swiss Target Prediction platform. GeneCards, DisGeNET Digsee and the Comparative Toxicogenomics Database (CTD) searched the targets corresponding to brucellosis. Then, the Venn diagram obtained intersection targets of QBTLP and diseases. Protein-protein interaction (PPI) network analysis was performed using the Search Tool for the Retrieval of Interacting Genes database (STRING) and visualized in Cytoscape software. Module analysis of the PPI network and core target identification was performed using the Molecular Complex Detection (MCODE) and the Cytohubba plugins. The Metascape data platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the intersection targets, and then the "active ingredientstargets- pathways" network was constructed using Cytoscape to screen key active ingredients. RESULTS: 19 key active ingredients were identified by network pharmacological, including Baicalein, Cryptopin, etc. The core targets of QBTLP for treating brucellosis contained TNF, TLR4, MAPK3, MAPK1, MAPK8, MAPK14, MMP9, etc. And the main pathways included the Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, TNF signaling pathway, MAPK signaling pathway, Th17 cell differentiation, and IL-17 signaling pathway. CONCLUSIONS: This study explored the mechanisms of QBTLP for treating brucellosis, which may provide a scientific basis for the clinical application of QBTLP.
Assuntos
Brucelose , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Brucelose/tratamento farmacológico , Diferenciação Celular , Bases de Dados Factuais , Ontologia Genética , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento MolecularRESUMO
The polysaccharide extract (PE) of Uyghur medicinal preparation Alhagi-honey was prepared by water extraction and alcohol precipitation method. The purified polysaccharide AP1-1 was obtained from PE by macroporous adsorption resin chromatography, DEAE cellulose chromatography, and Sephadex gel chromatography; the homogeneity and the molecular weight of AP1-1 were determined by gel filtration; and the acid hydrolysis, periodate oxidation, Smith degradation, and NMR analysis were used to analyze the chemical structure of AP1-1. The result showed that AP1-1 was a homogeneous polysaccharide, whose relative molecular weight was 9.97 × 10(4). Through high-performance capillary electrophoresis analysis, we found that its molecular structure was composed of mannose, glucose, galactose, and galacturonic acid with a molar ratio of about 1.1:1.9:3.9:2.1. The main chain of AP1-1 was mainly made up of â 4)ß-d-GalpA-(1 â 4)ß-d-GalpA-(1 â 4)-ß-d-Galp-(1 â 4)-ß-d-Galp-(1 â 6)α-d-Glcp-(1 â 4)α-d-Glcp(1 â , while the side chain is composed of â 6)-α-d-Glcp and 2-CH3-α-d-Man.
Assuntos
Medicamentos de Ervas Chinesas/química , Mel/análise , Plantas Medicinais/química , Polissacarídeos/isolamento & purificação , Galactose/análise , Glucose/análise , Ácidos Hexurônicos/análise , Manose/análise , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/análise , Polissacarídeos/químicaRESUMO
The brain of a human neonate is more vulnerable to hypoglycemia than that of pediatric and adult patients. Repetitive and profound hypoglycemia during the neonatal period (RPHN) causes brain damage and leads to severe neurologic sequelae. Ex vivo high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy was carried out in the present study to detect metabolite alterations in newborn and adolescent rats and investigate the effects of RPHN on their occipital cortex and hippocampus. Results showed that RPHN induces significant changes in a number of cerebral metabolites, and such changes are region-specific. Among the 16 metabolites detected by ex vivo (1)H NMR, RPHN significantly increased the levels of creatine, glutamate, glutamine, γ-aminobutyric acid, and aspartate, as well as other metabolites, including succine, taurine, and myo-inositol, in the occipital cortex of neonatal rats compared with the control. By contrast, changes in these neurochemicals were not significant in the hippocampus of neonatal rats. When the rats had developed into adolescence, the changes above were maintained and the levels of other metabolites, including lactate, N-acetyl aspartate, alanine, choline, glycine, acetate, and ascorbate, increased in the occipital cortex. By contrast, most of these metabolites were reduced in the hippocampus. These metabolic changes suggest that complementary mechanisms exist between these two brain areas. RPHN appears to affect occipital cortex and hippocampal activities, neurotransmitter transition, energy metabolism, and other metabolic equilibria in newborn rats; these effects are further aggravated when the newborn rats develop into adolescence. Changes in the metabolism of neurotransmitter system may be an adaptive measure of the central nervous system in response to RPHN.