Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(9): 4736-4747, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096614

RESUMO

To assess the problem of sewage treatment under the condition of low carbon sources, we carried out a study of activated sludge and a biofilm symbiosis system (IFAS). The occurrence characteristics and interaction law of microorganisms in two phases of sludge membrane under low carbon source conditions were discussed, and their niche and influence on treatment efficiency were clarified. Through a pilot-scale experiment in actual water plants, the biofilm characteristics, sludge membrane activity, and succession law of flora were analyzed, and the microbial structure and interaction in sludge membrane in two phases under the control of different activated sludge ages were compared. The results showed that the sludge concentration in the reactor increased with the increase in SRT under variable SRT. Because the microbial concentration in SRT-H was much higher than that in SRT-L, the competition between mud films in SRT-H was more intense than that in SRT-L, and the pollutant removal efficiency in SRT-H was lower than that in SRT-L. Under the condition of low-carbon feed water, the sludge activity in the IFAS process decreased with the increase in SRT. Under the condition of low SRT(5 d), the nitrification, denitrification, phosphorus accumulation, and phosphorus absorption rate of activated sludge increased by 122%, 88%, 34%, and 44%, respectively, compared with that of high SRT (25 d). However, SRT had little effect on biofilm activity, and there was little difference in nitrification activity and denitrification activity between the two SRTs. Microbial sequencing analysis showed that the functional bacteria of the IFAS process were enriched and transferred with the change in SRT between the two phases of mud membrane. In SRT-L, the functional bacteria that were enriched and transferred between the two phases of mud film owing to the "seeding" effect were mainly unclassified_g__Enterobacteriaceae, whereas in SRT-H, Acinetobacter was mainly used. At the same time, by analyzing the distribution of dominant functional bacteria, it was found that there was some competition between denitrifying bacteria and phosphorus-accumulating bacteria in activated sludge. Under the condition of a lack of organic substrate in the influent, the relative abundance of denitrifying bacteria was obviously higher than that of phosphorus-accumulating bacteria, which indicated that denitrifying bacteria could better adapt to low-carbon source conditions. Thus, they could occupy a dominant competition position, which was mainly reflected in the increase in the relative abundance of aerobic denitrifying bacteria. In addition, the SRT change in the mud phase reacted in the membrane phase, making the residence time of biofilm change correspondingly, thus changing the flora structure, screening out different dominant bacteria genera, and further increasing the difference.


Assuntos
Reatores Biológicos , Esgotos , Bactérias , Reatores Biológicos/microbiologia , Carbono , Interações Microbianas , Fósforo , Esgotos/microbiologia , Água
2.
Bioresour Technol ; 337: 125452, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34186332

RESUMO

This first-attempt study illustrated the microbial cooperative interactions related to bioelectricity generation from the mixture of sludge fermentation liquid (SFL) and fruit waste extracts (FWEs) via microbial fuel cells (MFCs). The optimal output voltages of 0.65 V for SFL-MFCs, 0.51 V for FWEs-MFCs and 0.75 V for mixture-MFCs associated with bioelectricity conversion efficiencies of 1.061, 0.718 and 1.391 kWh/kg COD were reached, respectively. FWEs addition for substrates C/N ratio optimization contributed considerably to increase SFL-fed MFCs performance via triggering a higher microbial diversity, larger relatively abundance of functional genes and microbial synergistic interactions with genera enrichment of Clostridium, Alicycliphilus, Thermomonas, Geobacter, Paludibaculum, Pseudomonas, Taibaiella and Comamonas. Furthermore, a conceptual illustration of co-locating scenario of wastewater treatment plant(s), waste sludge in situ acidogenic fermentation, fruit waste collection/crushing station and MFC plant was proposed for the first time, which provided new thinking for future waste sludge treatment toward maximizing solid reduction and power recovery.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Fermentação , Frutas , Extratos Vegetais , Esgotos , Águas Residuárias
3.
Sci Total Environ ; 712: 136562, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050387

RESUMO

Granular sludge usually takes extracellular polymers (EPS) as matrices for colonizing microorganisms and maintaining structural stability. However, the low strength of EPS threatens the disintegration of granules, especially under low hydraulic shear force. To accelerate the formation and enhance the stability of granules, micro-sized melamine (ME) sponges (RA) and polyurethane (PU) sponges (RB) were screened out as matrix substitutes for developing aerobic granular biofilm (AGB) in this study. The superficial gas velocity was 0.8 cm s-1. Both reactors achieved over 95% ammonium nitrogen removal efficiency within 10 days. During stabilization period, the chemical oxygen demand, total nitrogen and total phosphorus removal efficiencies were 90.5%, 70% and 95% in RA and 87.8%, 83% and 88% in RB, respectively. Confocal laser scanning microscopy (CLSM) detection revealed that ß-polysaccharide was more concentrated in the outer layer in PU-AGB but uniformly dispersed in ME-AGB. The denitrifying phosphorus accumulating organisms (Flavobacterium) was dominant in RA, while the denitrifying glycogen accumulating organisms (Candidatus_Competibacter) was dominant in RB. Fluorescence in situ hybridization (FISH) analysis indicated that the microbial distribution in ME-AGB was relatively uniform, while there was a significant migration of functional microorganisms in PU-AGB. The super-hydrophilicity of ME and the high hydrophobicity of PU may be the main reasons for these differences. Overall, this study indicated that ME sponge is a more suitable material for supporting AGB than PU sponge.


Assuntos
Microbiota , Esgotos , Aerobiose , Reatores Biológicos , Hibridização in Situ Fluorescente , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
4.
Sci Total Environ ; 698: 134311, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783455

RESUMO

Low temperature is a great challenge for the biological treatment of wastewater. In this study, the rapid start-up of aerobic granular biofilm (AGF) reactor was realized by adding micro-sized polyurethane (PU) sponges as matrices at 10 °C. The results showed that the granulation process of AGF was different from that of traditional aerobic granular sludge and biofilms, which was formed by using the sludge intercepted in PU matrix instead of sponge skeletons as granulation carriers. During the 5-month operation period, stable pollutants removal performance was achieved within 70 days, besides, the corresponding ammonium, total nitrogen, and total phosphorus removal efficiencies were 98%, 70%, and 95%, respectively. The addition of PU matrices inhibited the growth of filamentous bacteria and provided support for high structural stability of AGF. With the operation of the reactor, the relative abundance of traditional denitrifying bacteria (genera Thauera and Acidovorax, etc.) decreased gradually, and the putative denitrifying phosphorus accumulating genus, Dechloromonas, occupied a dominant position in the system. This experiment showed that AGF system could be successfully started-up and operated with efficient pollutants removal performance under low temperature when using micro-sized PU sponges as matrices.


Assuntos
Biofilmes , Temperatura , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio , Reatores Biológicos/microbiologia , Microbiota , Nitrogênio , Fósforo
5.
Chemosphere ; 211: 1219-1227, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30223338

RESUMO

Aerobic granules were successfully cultivated at 10 °C with relatively low strength substrate. Stable granules coexisted with the batt-like sludge (BLS) were obtained in 60 days. After removing the BLS, nutrient removal performance was greatly improved and stable removal efficiencies of 99% phosphorous, 98% ammonia and 60% TN were achieved. The bacterial community structure revealed that it was an unclassified-Comamonadaceae genus dominant in the BLS, which represented for low relative abundance in mature granules. Overgrowth of unclassified-Comamonadaceae genus was considered to be the key factor for inhibiting the performance of granules. The final configuration of granules was dominated by DPAO genus Flavobacterium and polysaccharide nutritional genus Chryseolinea. This study showed that stable aerobic granules with superior performance under low temperature could be successfully cultivated by sieving out the BLS.


Assuntos
Aerobiose , Temperatura Baixa , Esgotos/química , Amônia/isolamento & purificação , Reatores Biológicos/microbiologia , Filtração , Fósforo/isolamento & purificação , Esgotos/microbiologia , Eliminação de Resíduos Líquidos
6.
Water Sci Technol ; 67(11): 2437-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23752374

RESUMO

An anaerobic phosphorus release tank was introduced to an anaerobic-anoxic-aerobic (A(2)/O) process treating domestic sewage to enhance the phosphorus removal at low temperature. Phosphorus release of the activated sludge from the second sedimentation tank was evaluated at 14 °C by batch cultures, and the nutrient removal in the modified low temperature A(2)/O process was further investigated at the same temperature. The results showed that the feasible sludge retention time was 14 h for sequencing batch reaction and 12 h for continuous flow operation. The ratio of raw sewage to activated sludge from the second sedimentation tank was 1:1 in volume to meet the demand of carbon resource for the growth of phosphorus release microbes. The feasible chemical oxygen demand (COD) loading rate of the activated sludge in the phosphorus release tank was 0.015-0.02 g COD/g MLSS (mixed liquor suspended solids) and the nitrate concentration should be less than 5 mg/L. The phosphorus release was doubled when the sludge was blended intermittently and gently. The anaerobic phosphorus release of the activated sludge improved the phosphate removal remarkably, as well as the removal of NH4(+)-N and total nitrogen (TN) in the modified low temperature A(2)/O process. The effluent COD, NH4(+)-N, TN and total phosphorus could meet a stricter discharge standard.


Assuntos
Reatores Biológicos , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Compostos de Amônio Quaternário/análise , Esgotos , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 164(2-3): 1105-9, 2009 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18926629

RESUMO

Previous study showed that sonication was effective to reduce waste activated sludge (WAS) using artificial wastewater. This paper confirms the viability and evaluates the performance of this method in practical wastewater treatment using urban sewage without temperature control. The results showed that sonication significantly lowered the WAS and biomass synthesis, and greatly enhanced the mineralization of sewage organics. The optimal specific energy for sludge lysis was 20.0k Wh/kg DS. Further energy-increase had little benefit on WAS reduction. When the specific energy was 20.0kWh/kgDS and the sludge recycle ratio was 0.007, the WAS decreased by 54%, the biomass synthesis abated by 59%, and the sewage mineralization ratio increased from 31% to 58%. The effluent COD and nitrogen were stable but phosphorus was higher than that of the control bioreactor. The COD removal was lower but the WAS reduction was higher for urban sewage than for artificial wastewater. The accumulation pattern of heavy metals in sludge was greatly alternated by the sonication-cryptic growth; and different metals behaved differently. The sludge Ni concentration increased by 141% while As decreased by 53%.


Assuntos
Esgotos , Ultrassom , Eliminação de Resíduos Líquidos/métodos , Biomassa , Carbono , Metais Pesados/análise , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA