RESUMO
In this study, near-infrared (NIR) spectroscopy and high-performance liquid chromatography (HPLC) combined with chemometrics tools were applied for quick discrimination and quantitative analysis of different varieties and origins of Atractylodis rhizoma samples. Based on NIR data, orthogonal partial least squares discriminant analysis (OPLS-DA) and K-nearest neighbor (KNN) models achieved greater than 90% discriminant accuracy of the three species and two origins of Atractylodis rhizoma. Moreover, the contents of three active ingredients (atractyloxin, atractylone, and ß-eudesmol) in Atractylodis rhizoma were simultaneously determined by HPLC. There are significant differences in the content of the three components in the samples of Atractylodis rhizoma from different varieties and origins. Then, partial least squares regression (PLSR) models for the prediction of atractyloxin, atractylone, and ß-eudesmol content were successfully established. The complete Atractylodis rhizoma spectra gave rise to good predictions of atractyloxin, atractylone, and ß-eudesmol content with R2 values of 0.9642, 0.9588, and 0.9812, respectively. Based on the results of this present research, it can be concluded that NIR is a great nondestructive alternative to be applied as a rapid classification system by the drug industry.
Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Sesquiterpenos de Eudesmano , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Quimiometria , Análise dos Mínimos QuadradosRESUMO
Spexin (SPX) is a pleiotropic peptide with highly conserved protein sequence from fish to mammals and its biological actions are mediated by GalR2/GalR3 receptors expressed in target tissues. Recently, SPX has been confirmed to be a novel satiety factor in fish species but whether the peptide has a similar function in mammals is still unclear. Using the mouse as a model, the functional role of SPX in feeding control and the mechanisms involved were investigated. After food intake, serum SPX in mice could be up-regulated with elevations of transcript expression and tissue content of SPX in the glandular stomach but not in other tissues examined. As revealed by immunohistochemical staining, food intake also intensified SPX signals in the major cell types forming the gastric glands (including the foveolar cells, parietal cells, and chief cells) within the gastric mucosa of glandular stomach. Furthermore, IP injection of SPX was effective in reducing food intake with parallel attenuation in transcript expression of NPY, AgRP, NPY type 5 receptor (NPY5R), and ghrelin receptor (GHSR) in the hypothalamus, and these inhibitory effects could be blocked by GalR3 but not GalR2 antagonism. In agreement with the central actions of SPX, similar inhibition on feeding and hypothalamic expression of NPY, AgRP, NPY5R, and GHSR could also be noted with ICV injection of SPX. In the same study, in contrast to the drop in NPY5R and GHSR, SPX treatment could induce parallel rises of transcript expression of leptin receptor (LepR) and melanocortin 4 receptor (MC4R) in the hypothalamus. These findings, as a whole, suggest that the role of SPX as a satiety factor is well conserved in the mouse. Apparently, food intake can induce SPX production in glandular stomach and contribute to the postprandial rise of SPX in circulation. Through GalR3 activation, this SPX signal can act within the hypothalamus to trigger feedback inhibition on feeding by differential modulation of feeding regulators (NPY and AgRP) and their receptors (NPY5R, GHSR, LepR, and MC4R) involved in the feeding circuitry within the CNS.
Assuntos
Ingestão de Alimentos/fisiologia , Hipotálamo/metabolismo , Hormônios Peptídicos/metabolismo , Saciação/fisiologia , Animais , Camundongos , Receptores de Grelina/metabolismo , Regulação para CimaRESUMO
BACKGROUND/OBJECTIVES: The results linking body iron stores to the risk of gestational diabetes mellitus (GDM) are conflicting. We aimed to measure the serum ferritin level of women in early pregnancy and evaluate the risk of GDM in a Chinese urban population. SUBJECTS/METHODS: In total, 851 pregnant women between 10 and 20 weeks of gestation took part in the prospective, observational study conducted. The women were divided into four groups by quartiles of serum ferritin levels (Q1-4). Their blood samples were collected and assayed for several biochemical variables at the beginning of the study, and the women were followed up with a 75-g oral glucose tolerance test at 24-28 weeks of gestation. RESULTS: The participants had an average serum ferritin concentration of 65.67 µg/L. GDM prevalence within each serum ferritin quartile was 9.4%, 14.6%, 18.8% and 19.3%, respectively, (P = 0.016). The odds ratio for GDM in the ferritin Q2-4 was 1.64 (CI: 0.90-2.99), 2.23 (CI: 1.26-3.96) and 2.31 (CI: 1.30-4.10), compared with Q1, respectively. This association persisted after adjusting for potential confounders factors. In addition, in Q4, pregnant women with a pre-pregnancy body mass index ≥24 kg/m2, maternal age ≤35 years old or haemoglobin≥ 110 g/L did have an increased risk of developing GDM. CONCLUSIONS: Elevated serum ferritin concentrations in early gestation are associated with an increased risk of GDM, especially in pregnant women who have a high baseline iron storage status with no anaemia or who are overweight/obese. Individual iron supplementation should be considered to minimize the risk of GDM.
Assuntos
Diabetes Gestacional/sangue , Diabetes Gestacional/diagnóstico , Ferritinas/sangue , Hiperferritinemia/sangue , Adulto , Feminino , Teste de Tolerância a Glucose , Humanos , Gravidez , Estudos Prospectivos , Fatores de RiscoRESUMO
It has previously been reported that the influence of vitamin D on the metabolism of calcium and phosphorus is associated with diabetes, cardiovascular disease, Alzheimer's disease, cancer and other systemic diseases, and is considered an important indicator of general health. The present study was conducted to determine the effect of various doses of vitamin D supplementation on glucose metabolism, lipid concentrations, inflammation and the levels of oxidative stress of pregnant women with gestational diabetes mellitus (GDM). The present randomized, double-blind placebo-controlled clinical trial was conducted on 133 pregnant women with GDM during weeks 24-28 of pregnancy. The patients were randomly divided into four groups. The control group (n=20) received a placebo (sucrose; one granule/day), the low dosage group (n=38) received the daily recommended intake of 200 IU vitamin D (calciferol) daily, the medium dosage group (n=38) received 50,000 IU monthly (2,000 IU daily for 25 days) and the high dosage group (n=37) received 50,000 IU every 2 weeks (4,000 IU daily for 12.5 days). The general characteristics and dietary intakes of the patients with GDM were similar between each group. Using ELISA kits, it was determined that insulin, homeostatic model assessment-insulin resistance and total cholesterol were significantly reduced by high dosage vitamin D supplementation (P<0.05). Total antioxidant capacity and total glutathione levels were significantly elevated as a result of high dosage vitamin D supplementation (P<0.01). In conclusion, high-dose vitamin D supplementation (50,000 IU every 2 weeks) significantly improved insulin resistance in pregnant women with GDM.