Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 43(12): 3096-3111, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229602

RESUMO

Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.


Assuntos
Produtos Biológicos , Espectrometria de Massas/métodos , Plantas , Pesquisa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Basic Clin Pharmacol Toxicol ; 129(6): 437-449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34478607

RESUMO

Methylophiopogonanone A (MOA) is an abundant homoisoflavonoid in the Chinese herb Ophiopogonis Radix. Recent investigations revealed that MOA inhibited several human cytochrome P450 enzymes (CYPs) and stimulated OATP1B1. However, the inhibitory effects of MOA on phase II drug-metabolizing enzymes, such as human UDP-glucuronosyltransferases (hUGTs), have not been well investigated. Herein, the inhibition potentials of MOA on hUGTs were assessed. The results clearly demonstrated that MOA dose-dependently inhibited all tested hUGTs including UGT1A1 (IC50 = 1.23 µM), one of the most important detoxification enzymes in humans. Further investigations showed that MOA strongly inhibited UGT1A1-catalysed NHPH-O-glucuronidation in a range of biological settings including hUGT1A1, human liver microsomes (HLM) and HeLa cells overexpressing UGT1A1. Inhibition kinetic analyses demonstrated that MOA competitively inhibited UGT1A1-catalysed NHPH-O-glucuronidation in both hUGT1A1 and HLM, with Ki values of 0.52 and 1.22 µM, respectively. Collectively, our findings expanded knowledge of the interactions between MOA and human drug-metabolizing enzymes, which would be very helpful for guiding the use of MOA-related herbal products in clinical settings.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Interações Ervas-Drogas , Isoflavonas/farmacologia , Benzodioxóis/administração & dosagem , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Células HeLa , Humanos , Concentração Inibidora 50 , Isoflavonas/administração & dosagem , Microssomos Hepáticos/enzimologia
3.
Int J Biol Macromol ; 180: 252-261, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741369

RESUMO

Strong inhibition of the human UDP-glucuronosyltransferase enzymes (UGTs) may lead to undesirable effects, including hyperbilirubinaemia and drug/herb-drug interactions. Currently, there is no good way to examine the inhibitory effects and specificities of compounds toward all the important human UGTs, side-by-side and under identical conditions. Herein, we report a new, broad-spectrum substrate for human UGTs and its uses in screening and characterizing of UGT inhibitors. Following screening a variety of phenolic compound(s), we have found that methylophiopogonanone A (MOA) can be readily O-glucuronidated by all tested human UGTs, including the typical N-glucuronidating enzymes UGT1A4 and UGT2B10. MOA-O-glucuronidation yielded a single mono-O-glucuronide that was biosynthesized and purified for structural characterization and for constructing an LC-UV based MOA-O-glucuronidation activity assay, which was then used for investigating MOA-O-glucuronidation kinetics in recombinant human UGTs. The derived Km values were crucial for selecting the most suitable assay conditions for assessing inhibitory potentials and specificity of test compound(s). Furthermore, the inhibitory effects and specificities of four known UGT inhibitors were reinvestigated by using MOA as the substrate for all tested UGTs. Collectively, MOA is a broad-spectrum substrate for the human UGTs, which offers a new and practical tool for assessing inhibitory effects and specificities of UGT inhibitors.


Assuntos
Benzodioxóis/metabolismo , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Isoflavonas/metabolismo , Animais , Benzodioxóis/química , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Feminino , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronosiltransferase/química , Humanos , Isoflavonas/química , Cinética , Macaca fascicularis , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Coelhos , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Biomed Res Int ; 2017: 7585989, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29214176

RESUMO

OBJECTIVE: To investigate the gut microbiota differences of obese children compared with the control healthy cohort to result in further understanding of the mechanism of obesity development. METHODS: We evaluated the 16S rRNA gene, the enterotypes, and quantity of the gut microbiota among obese children and the control cohort and learned the differences of the gut microbiota during the process of weight reduction in obese children. RESULTS: In the present study, we learned that the gut microbiota composition was significantly different between obese children and the healthy cohort. Next we found that functional changes, including the phosphotransferase system, ATP-binding cassette transporters, flagellar assembly, and bacterial chemotaxis were overrepresented, while glycan biosynthesis and metabolism were underrepresented in case samples. Moreover, we learned that the amount of Bifidobacterium and Lactobacillus increased among the obese children during the process of weight reduction. CONCLUSION: Our results might enrich the research between gut microbiota and obesity and further provide a clinical basis for therapy for obesity. We recommend that Bifidobacterium and Lactobacillus might be used as indicators of healthy conditions among obese children, as well as a kind of prebiotic and probiotic supplement in the diet to be an auxiliary treatment for obesity.


Assuntos
Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Microbiota/genética , Obesidade/microbiologia , Adolescente , Povo Asiático , Bifidobacterium/genética , Bifidobacterium/fisiologia , Criança , Pré-Escolar , Estudos de Coortes , Dieta , Suplementos Nutricionais , Humanos , Lactobacillus/genética , Lactobacillus/fisiologia , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , RNA Ribossômico 16S/genética , Redução de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA