Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 14(24): 10814-10828, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37982812

RESUMO

This study investigated the composition of Tartary buckwheat oil fermented by Monascus purpureus and extracted under supercritical CO2 conditions (FTBO) and evaluated its effects on lipid-lowering, inflammation modulation, and gut microbial regulation in mice that were fed a high-fat diet (MOD). Compared with the raw oil (TBO), the γ-oryzanol content reached 27.09 mg g-1; the monounsaturated fatty acid (MUFA) content (such as oleic acid and palmitic acid) was elevated; and the antioxidant capacities of DPPH, ABTS, and hydroxyl were improved in FTBO (p < 0.0001). Then, supplementation with FTBO had a remarkable effect on reducing the body weight and visceral obesity as well as alleviating hyperglycemia, dyslipidemia, inflammatory reactions, and liver damage. The TC, TG, and LDL-C levels in the liver and plasma were reduced, and the HDL-C levels in the liver were increased (p < 0.05). In particular, the high-dose group (FTBOH) exhibited the most significant effect on reducing the pro-inflammatory cytokines ET, TNF-α, IL-1ß, and IL-6 in the liver, which were 18.85, 570.12, 50.47, and 26.22 pg mL-1, respectively (p < 0.05). Moreover, FTBO reversed intestinal disorders and increased the intestinal microbial diversity and richness. The relative abundance of beneficial bacteria, such as Bifidobacterium, Lactobacillus, Limosilactobacillus, and Lachnospiraceae_UCG-006, were increased, and the relative abundance of the harmful bacteria Staphylococcus and Lachnoclostridium were reduced. In summary, FTBO has potential applications as a dietary supplement or dietary modifier in lowering blood lipids, modulating immune activity, and reversing intestinal disorders. This study provides reference guidance for the subsequent industrialization and development of Tartary buckwheat, the extension of the industrial chain, the development of new products, and the extraction of functional components.


Assuntos
Fagopyrum , Microbioma Gastrointestinal , Camundongos , Animais , Fagopyrum/química , Inflamação/tratamento farmacológico , Lipídeos , Fígado , Dieta Hiperlipídica/efeitos adversos
2.
Sci Rep ; 9(1): 7397, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089197

RESUMO

Supplying exogenous sulfur-rich compounds increases the content of glutathione(GSH) and phytochelatins(PCs) in plant tissues, enabling plants to enhance their cellular defense capacity and/or compartmentalize Cadmium(Cd) into vacuoles. However, the mechanism by which surplus S modulates tolerance to Cd stress in different tissues need further investigation. In the present study, we found that supplementing the tartary buckwheat(Fagopyrum tararicum) exposed to Cd with surplus S reversed Cd induced adverse effects, and increased Cd concentrations in roots, but decreased in leaves. Further analysis revealed that exogenous S significantly mitigated Cd-induced oxidative stress with the aids of antioxidant enzymes and agents both in leaves and roots, including peroxidase(POD), ascorbate peroxidase(APX), glutathione peroxidase(GPX), glutathione S-transferase(GST), ascorbic acid(AsA), and GSH, but not superoxide dismutase(SOD) and catalase(CAT). The increased Cd uptake in root vacuoles and decreased translocation in leaves of exogenous S treated plants could be ascribed to the increasing Cd binding on cell walls, chelation and vacuolar sequestration with helps of non-protein thiols(NPT), PCs and heavy metal ATPase 3(FtHMA3) in roots, and inhibiting expression of FtHMA2, a transporter that helps Cd translocation from roots to shoots. Results provide the fundamental information for the application of exogenous S in reversal of heavy metal stress.


Assuntos
Cádmio/metabolismo , Fagopyrum/efeitos dos fármacos , Fertilizantes , Poluentes do Solo/metabolismo , Enxofre/farmacologia , Cádmio/análise , Cádmio/toxicidade , Fagopyrum/química , Fagopyrum/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/metabolismo , Fitoquelatinas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Poluentes do Solo/toxicidade , Vacúolos/química , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA