RESUMO
Alfalfa (Medicago sativa L.) is a globally important forage crop. It also serves as a vegetable and medicinal herb because of its excellent nutritional quality and significant economic value. Multi-omics data on alfalfa continue to accumulate owing to recent advances in high-throughput techniques, and integrating this information holds great potential for expediting genetic research and facilitating advances in alfalfa agronomic traits. Therefore, we developed a comprehensive database named MODMS (multi-omics database of M. sativa) that incorporates multiple reference genomes, annotations, comparative genomics, transcriptomes, high-quality genomic variants, proteomics, and metabolomics. This report describes our continuously evolving database, which provides researchers with several convenient tools and extensive omics data resources, facilitating the expansion of alfalfa research. Further details regarding the MODMS database are available at https://modms.lzu.edu.cn/.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) ranks among the deadliest pulmonary diseases, significantly impacting mortality and morbidity. Presently, the primary treatment for ALI involves supportive therapy; however, its efficacy remains unsatisfactory. Strictosamide (STR), an indole alkaloid found in the Chinese herbal medicine Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Wutan), has been found to exhibit numerous pharmacological properties, particularly anti-inflammatory effects. AIM OF THE STUDY: This study aimes to systematically identify and validate the specific binding proteins targeted by STR and elucidate its anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced ALI. MATERIALS AND METHODS: Biotin chemical modification, protein microarray analysis and network pharmacology were conducted to screen for potential STR-binding proteins. The binding affinity was assessed through surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and molecular docking, and the anti-inflammatory mechanism of STR in ALI treatment was assessed through in vivo and in vitro experiments. RESULTS: Biotin chemical modification, protein microarray and network pharmacology identified extracellular-signal-regulated kinase 2 (ERK2) as the most important binding proteins among 276 candidate STR-interacting proteins and nuclear factor-kappaB (NF-κB) pathway was one of the main inflammatory signal transduction pathways. Using SPR, CETSA, and molecular docking, we confirmed STR's affinity for ERK2. In vitro and in vivo experiments demonstrated that STR mitigated inflammation by targeting ERK2 to modulate the NF-κB signaling pathway in LPS-induced ALI. CONCLUSIONS: Our findings indicate that STR can inhibit the NF-κB signaling pathway to attenuate LPS-induced inflammation by targeting ERK2 and decreasing phosphorylation of ERK2, which could be a novel strategy for treating ALI.
Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Alcaloides de Vinca , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Biotina/metabolismo , Biotina/farmacologia , Biotina/uso terapêutico , Simulação de Acoplamento Molecular , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/efeitos adversos , Inflamação/tratamento farmacológico , Pulmão/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has saved countless lives and maintained human health over its long history, especially in respiratory infectious diseases. The relationship between the intestinal flora and the respiratory system has been a popular research topic in recent years. According to the theory of the "gut-lung axis" in modern medicine and the idea that "the lung stands in an interior-exterior relationship with the large intestine" in TCM, gut microbiota dysbiosis is a contributing factor to respiratory infectious diseases, and there is potential means for manipulation of the gut microbiota in the treatment of lung diseases. Emerging studies have indicated intestinal Escherichia coli (E. coli) overgrowth in multiple respiratory infectious diseases, which could exacerbate respiratory infectious diseases by disrupting immune homeostasis, the gut barrier and metabolic balance. TCM is an effective microecological regulator, that can regulate the intestinal flora including E. coli, and restore the balance of the immune system, gut barrier, and metabolism. AIM OF THE REVIEW: This review discusses the changes and effects of intestinal E. coli in respiratory infection, as well as the role of TCM in the intestinal flora, E. coli and related immunity, the gut barrier and the metabolism, thereby suggesting the possibility of TCM therapy regulating intestinal E. coli and related immunity, the gut barrier and the metabolism to alleviate respiratory infectious diseases. We aimed to make a modest contribution to the research and development of new therapies for intestinal flora in respiratory infectious diseases and the full utilization of TCM resources. Relevant information about the therapeutic potential of TCM to regulate intestinal E. coli against diseases was collected from PubMed, China National Knowledge Infrastructure (CNKI), and so on. The Plants of the World Online (https://wcsp.science.kew.org) and the Plant List (www.theplantlist.org) databases were used to provide the scientific names and species of plants. RESULTS: Intestinal E. coli is a very important bacterium in respiratory infectious diseases that affects the respiratory system through immunity, the gut barrier and the metabolism. Many TCMs can inhibit the abundance of E. coli and regulate related immunity, the gut barrier and the metabolism to promote lung health. CONCLUSION: TCM targeting intestinal E. coli and related immune, gut barrier, and metabolic dysfunction could be a potential therapy to promote the treatment and prognosis of respiratory infectious diseases.
Assuntos
Doenças Transmissíveis , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Escherichia coli , Doenças Transmissíveis/tratamento farmacológico , BactériasRESUMO
Sanggenon C is a flavonoid extracted from the root bark of white mulberry, which is a traditional Chinese medicine with anti-inflammatory, antioxidative, and antitumor pharmacological effects. In this study, sanggenon C was found to inhibit human gastric cancer (GC) cell proliferation and colony formation, induce GC cell cycle arrest in the G0-G1 phase, and promote GC cell apoptosis. Moreover, sanggenon C was found to decrease the level of mitochondrial membrane potential in GC cells and inhibit mitochondrial fission. Mechanistically, RNA sequencing, bioinformatics analysis, and a series of functional analyses confirmed that sanggenon C inhibited mitochondrial fission to induce apoptosis by blocking the extracellular regulated protein kinases (ERK) signaling pathway, and constitutive activation of ERK significantly abrogated these effects. Finally, sanggenon C was found to suppress the growth of tumor xenografts in nude mice without obvious side effects to the vital organs of animals. This study reveals that sanggenon C could be a novel therapeutic strategy for GC treatment.
Assuntos
Dinâmica Mitocondrial , Neoplasias Gástricas , Camundongos , Animais , Humanos , Neoplasias Gástricas/tratamento farmacológico , Camundongos Nus , Proteínas Quinases/farmacologia , Apoptose , Carcinogênese , Proliferação de Células , Linhagem Celular TumoralRESUMO
Wang-Bi capsule (WB) is a traditional Chinese medicine formula and has been applied for rheumatoid arthritis (RA) treatment for many years. However, its underlying molecular mechanisms still remain unclear. In this study, collagen-induced arthritis (CIA) rats were used to observe the therapeutic effect of WB used at different time points, and the proteomic analysis of synovial tissue was applied to reveal its basic molecular mechanisms. The results demonstrated that WB not only effectively ameliorated the symptoms and synovitis, but also downregulated the serum levels of inflammatory cytokines/chemokines in CIA rats. Furthermore, the proteomic analysis of synovial tissue showed that WB could regulate several signaling pathways associated with inflammation or cell migration, such as "IL-1 signaling," "IL-8 signaling," and "CXCR4 signaling." The expression levels of proteins including matrix metalloproteinase 3 (MMP3), MMP19, lipopolysaccharide-binding protein (LBP), serine/threonine kinase interleukin-1 receptor-associated kinase 4 (IRAK4), and actin-related protein 2/3 complex subunit 5 (ARPC5) in these pathways were downregulated significantly by WB when compared with the model group. In sum, this study indicated that WB had obvious inhibitory effects on synovitis of CIA rats, and the mechanisms of which may be involved in downregulating the expression levels of several key proteins including MMP3, MMP19, LBP, IRAK4, and ARPC5.
Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Membrana Sinovial/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Proteômica , Ratos , Membrana Sinovial/imunologia , Membrana Sinovial/patologiaRESUMO
BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease accompanied with joint destruction that often leads to disability. Wang-Bi capsule (WB), a traditional Chinese medicine-based herbs formula, has exhibited inhibition effect on joint destruction of collagen-induced arthritis (CIA) animal model in our previous study. But its molecular mechanisms are still obscure. METHODS: CIA rats were treated intragastrical with WB for eight weeks, and the effect of joints protection were evaluated by hematoxylin and eosin (H&E) staining, safranin O fast green staining, tartrate-resistant acid phosphatase (TRAP) staining and microCT scanning analysis. The transcriptomic of tarsal joints were used to investigate how WB alleviated joint destruction. RESULTS: The histological examination of ankle joints showed WB alleviated both cartilage damage and bone destruction of CIA rats. This protective effect on joints were further evidenced by micro-CT analysis. The transcriptomic analysis showed that WB prominently changed 12 KEGG signaling pathways ("calcium signaling pathway", "cAMP signaling pathway", "cell adhesion molecules", "chemokine signaling pathway", "complement and coagulation cascades", "MAPK signaling pathway", "NF-kappa B signaling pathway", "osteoclast differentiation", "PI3K-Akt signaling pathway", "focal adhesion", "Gap junction" and "Rap1 signaling pathway") associated with bone or cartilage. Several genes (including Il6, Tnfsf11, Ffar2, Plg, Tnfrsf11b, Fgf4, Fpr1, Siglec1, Vegfd, Cldn1, Cxcl13, Chad, Arrb2, Fgf9, Egfr) regulating bone resorption, bone formation and cartilage development were identified by further analysis. Meanwhile, these differentially expressed genes were validated by real-time quantitative PCR. CONCLUSIONS: Overall, the protective effect of WB treatment on joint were confirmed in CIA rats, and its basic molecular mechanisms may be associated with regulating some genes (including Il6, Tnfsf11, Ffar2 and Plg etc.) involved in bone resorption, bone formation and cartilage development.
RESUMO
The Chinese formula Pien Tze Huang (PZH) has been used to treat hepatocellular carcinoma (HCC) and showed positive clinical effects. However, the antitumor mechanism of PZH in HCC remains unclear. In this study, HCC xenograft Balb/c mice were treated with PZH; then, proteomics detection and Ingenuity Pathway Analysis (IPA) were used to analyze the differentiated phosphorylated proteins in tumor tissues. The results indicated that PZH could inhibit tumor weight by 50.76%. Eighty-four upregulated and 11 downregulated phosphorylated proteins were identified in PZH-treated mice. Twenty signaling pathways were associated with inflammation (including the IL-6 and TNFR1/2 pathways), cancer growth (including the p53 and FAK pathways), and the cell cycle (including the G2/M and G1/S checkpoint regulation pathways). Moreover, TNF-α, IL-6, and several typical differentially expressed phosphorylated proteins (such as p-CCNB1, p-FOXO3, and p-STAT3) in tumor tissues, tumor cell viability, and cell cycle arrest assay in vitro further verify the results of IPA. These results revealed that PZH achieved antitumor activity in HCC; the underlying mechanisms of which were mainly through regulating the inflammation-associated cytokine secretion, cancer growth pathways, and induction of G2/M arrest. These data provided the potential molecular basis for PZH to act as a therapeutic drug or a supplement to chemotherapy drugs for human HCC in the future.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteômica , Animais , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/etiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional/métodos , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/etiologia , Masculino , Camundongos , Proteoma , Proteômica/métodosRESUMO
On-site sampling analysis and laboratory-scale experiments were conducted to study the pollution status and release potential of EDCs in Erhai Lake. We found that nitrogen and phosphorus pollution in Erhai Lake sediment were both at a high level, as well as EDCs pollution. The concentrations of BPA, E2α, E1, E2ß, EE2, and E3 were 36.84 ng/g(DW), 13.04 ng/g(DW), 128.97 ng/g(DW), 52.57 ng/g(DW), 18.48 ng/g(DW) and 5.36 ng/g(DW), respectively. The concentrations of E2α, E1, E2ß and EE2 in the bottom water were higher than the surface water due to the impact of sediment release. The results of the 20 days release test indicated that BPA release from the sediment had a greater correlation with the original concentration and the particle size of sediment, while the steroid EDCs had no obvious correlation with these two factors, probably due to the difference in hydrophobicity between them. Under hydraulic disturbance and aerobic conditions, the release process of EDCs was accompanied by a large amount of microbial degradation, and degradation amount > released amount. BPA was released quickly, 9.56% was released in 20 days, but only 3.37% of steroid EDCs released. In comparison, the release process of steroids was longer and posed a greater threat to aquatic ecology.
Assuntos
Compostos Benzidrílicos/análise , Monitoramento Ambiental , Estrogênios/análise , Fenóis/análise , Poluentes Químicos da Água/análise , China , Disruptores Endócrinos/análise , Poluição Ambiental/análise , Sedimentos Geológicos , Lagos , Nitrogênio/análise , Fósforo/análiseRESUMO
Bone destruction is an important pathological feature of rheumatoid arthritis (RA), which finally leads to the serious decline of life quality in RA patients. Bone metabolism imbalance is the principal factor of bone destruction in RA, which is manifested by excessive osteoclast-mediated bone resorption and inadequate osteoblast-mediated bone formation. Although current drugs alleviate the process of bone destruction to a certain extent, there are still many deficiencies. Recent studies have shown that traditional Chinese medicine (TCM) could effectively suppress bone destruction of RA. Some bioactive compounds from TCM have shown good effect on inhibiting osteoclast differentiation and promoting osteoblast proliferation. This article reviews the research progress of bioactive compounds exacted from TCM in inhibiting bone destruction of RA, so as to provide references for further clinical and scientific research.
RESUMO
Rheumatoid arthritis (RA) is a chronic disease with complex molecular network of pathophysiology, single drug is usually not full satisfactory because it is almost impossible to target the whole molecular network of the disease. Drug combinations that act synergistically with each another is an effective strategy in RA therapy. In this study, we aimed to establish a new strategy to search effective synergized compounds from Chinese herbal medicine (CHM) used in RA. Based on multi-information integrative approaches, imperatorin (IMP) and ß-sitosterol (STO) were predicted as the most effective pair for RA therapy. Further animal experiments demonstrated that IMP+STO treatment ameliorated arthritis severity of collagen-induced arthritis (CIA) rats in a synergistic manner, whereas IMP or STO administration separately had no such effect. RNA sequencing and IPA analysis revealed that the synergistic mechanism of IMP+STO treatment was related to its regulatory effect on 5 canonical signaling pathways, which were not found when IMP or STO used alone. Moreover, LTA, CD83, and SREBF1 were 3 important targets for synergistic mechanism of IMP+STO treatment. The levels of these 3 genes were significantly up-regulated in IMP+STO group compared to model group, whereas IMP or STO administration separately had no effect on them. In conclusion, this study found that IMP and STO were 2 synergistic compounds from the CHM in RA therapy, whose synergistic mechanism was closely related to regulate the levels of LTA, CD83, and SREBF1.
Assuntos
Artrite Experimental/tratamento farmacológico , Furocumarinas/farmacologia , Sitosteroides/farmacologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas , Furocumarinas/isolamento & purificação , Furocumarinas/uso terapêutico , Masculino , Fitoterapia , Ratos , Índice de Gravidade de Doença , Transdução de Sinais , Sitosteroides/isolamento & purificação , Sitosteroides/uso terapêuticoRESUMO
Wang-Bi Capsule (WB), a traditional Chinese medicine- (TCM-) based herbal formula, is currently used in clinic for the treatment of rheumatoid arthritis (RA) with positive clinical effects. However, its pharmacological mechanism of action in RA is still obscure. Therefore, this study established a collagen-induced arthritis (CIA) mice model to examine the efficacy of WB by using arthritis score, histological analysis, and micro-CT examination. Proinflammatory cytokines expression, osteoclast number, OPG/RANKL system, and NF-κB activation were then detected to further investigate the mechanism of WB in RA treatment. The results indicated that WB could alleviate the erythema and swelling of paws in CIA mice. It also inhibited the infiltration of inflammatory cells and bone destruction and increased bone density in joints of CIA mice. Mechanistic studies showed that WB treatment decreased the production of IL-1ß, IL-6, and TNF-α in serum and joints of CIA mice. Moreover, it reduced the osteoclast number, increased OPG level, decreased RANKL level, and inhibited the activation of NF-κB in joints of CIA mice. In conclusion, this study demonstrated that WB could effectively alleviate disease progression of CIA mice by decreasing the IL-1ß, IL-6, and TNF-α levels, modulating the OPG/RANKL system, and inhibiting the activation of NF-κB.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Tougu Xiaotong capsules (TXC) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY: We attempted to verify TXC's therapeutic effects and mechanisms related to the p38 mitogen-activated protein kinase (MAPK) pathway in vivo and in vitro. MATERIALS AND METHODS: TXC's therapeutic effects were assessed by observing cartilage degeneration and inflammatory factors in a modified Hulth's model (in vivo) and a lipopolysaccharides (LPS)-exposed cellular model (in vitro). The expression of biomarkers related to p38 MAPK pathway-mediated inflammation was also investigated. RESULTS: TXC treatment reversed cartilage degeneration related biomarkers (ADAMTS 4, ADAMTS 5, Col I, Col V, MMP 3, MMP 9, and MMP 13) and inflammation factors (IL-1ß, TNF-α, and IL-6) in both the animal and cellular OA models. Expression of p-p38 MAPK was downregulated following TXC administration, and changes to microRNAs in the cellular models were recovered. These results indicated that the p38 MAPK pathway-related mechanism may involve therapeutic effects of TXC. CONCLUSIONS: This study verified TXC's efficacy to treat OA in vivo and in vitro and suggests that p38 MAPK pathway-related mechanisms may be involved in TXC's therapeutic effects.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Biomarcadores/metabolismo , Cápsulas , Regulação para Baixo/efeitos dos fármacos , Inflamação/patologia , Masculino , MicroRNAs/genética , Osteoartrite/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
The aim of this paper was to study the influence of triptolide in the immune response pathways of acquired immune deficiency syndrome( AIDS). Target proteins of triptolide and related genes of AIDS were searched in PubChem and Gene databases on line. Molecular networks and canonical pathways comparison analyses were performed by bioinformatics software( IPA). There were 15 targets proteins of triptolide and 258 related genes of AIDS. Close biological relationships of molecules of triptolide and AIDS were established by networks analysis. There were 21 common immune response pathways of triptolide and AIDS,including neuroinflammation signaling pathway,Th1 and Th2 activation pathway and role of pattern recognition receptors in recognition of bacteria and viruses. Triptolide stimulated immune response pathways by the main molecules of IFNγ,JAK2,NOD1,PTGS2,RORC. IFNγ is the focus nodes of triptolide and AIDS,and regulates genes of AIDS directly or indirectly. Triptolide may against AIDS by regulating molecules IFNγ in immune response pathways.
Assuntos
Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Diterpenos/farmacologia , Interferon gama/genética , Fenantrenos/farmacologia , Síndrome da Imunodeficiência Adquirida/imunologia , Biologia Computacional , Compostos de Epóxi/farmacologia , Redes Reguladoras de Genes , Humanos , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais , Linfócitos T/imunologiaRESUMO
Within non-communicable diseases, chronic inflammatory conditions represent one of the biggest challenges for modern medicine. Traditional Chinese Medicine (TCM) has been practiced over centuries and has accumulated tremendous empirical knowledge on the treatment of such diseases. Huangqi Jianzhong Tang (HQJZT) is a famous TCM herbal formula composed of Radix Astragali, Ramulus Cinnamomi, Radix et Rhizoma Glycyrrhizae Praeparata cum Melle, Radix Paeoniae Alba, Rhizoma Zingiberis Recens, Fructus Jujubae and Saccharum Granorum (maltose), which has been used for the treatment of various chronic inflammatory gastrointestinal diseases. However, there is insufficient knowledge about its active constituents and the mechanisms responsible for its effects. The present study aimed at identifying constituents contributing to the bioactivity of HQJZT by combining in vitro cytokine production assays and LC-MS metabolomics techniques. From the HQJZT decoction as well as from its single herbal components, extracts of different polarities were prepared. Phytochemical composition of the extracts was analyzed by means of UPLC-QTOF-MS/MS. The inhibitory effects of the extracts on TNF-α, IL-1ß and IFN-γ production were studied in U937 cells. Phytochemical and pharmacological bioactivity data were correlated by orthogonal projection to latent structures discriminant analysis (OPLS-DA) in order to identify those HQJZT constituents which may be relevant for the observed pharmacological activities. The investigations resulted in the identification of 16 HQJZT constituents, which are likely to contribute to the activities observed in U937 cells. Seven of them, namely calycosin, formononetin, astragaloside I, liquiritigenin, 18ß-glycyrrhetinic acid, paeoniflorin and albiflorin were unambiguously identified. The predicted results were verified by testing these compounds in the same pharmacological assays as for the extracts. In conclusion, the anti-inflammatory activity of HQJZT could be substantiated by in vitro pharmacological screening, and the predicted activities of the OPLS-DA hits could be partially verified. Moreover, the benefits and limitations of MVDA for prediction pharmacologically active compounds contributing to the activity of a TCM mixture could be detected.
Assuntos
Anti-Inflamatórios/química , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/química , Lipopolissacarídeos/efeitos adversos , Metabolômica/métodos , Anti-Inflamatórios/farmacologia , Cromatografia Líquida , Citocinas/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo , Células U937RESUMO
OBJECTIVE: To explore the molecular-level mechanism on the hematopoiesis effect of Angelicae sinensis Radix (ASR) with systems-based interactome analysis. METHODS: This systems-based interactome analysis was designed to enforce the workflow of "ASR (herb)âcompoundâtarget proteinâinternal protein actionsâending regulated protein for hematopoiesis". This workflow was deployed with restrictions on regulated proteins expresses in bone marrow and anemia disease and futher validated with experiments. RESULTS: The hematopoiesis mechanism of ASR might be accomplished through regulating pathways of cell proliferation towards hemopoiesis with cross-talking agents of spleen tyrosine kinase (SYK), Janus kinase 2 (JAK2), and interleukin-2-inducible T-cell kinase (ITK). The hematopoietic function of ASR was also validated by colony-forming assay performed on mice bone marrow cells. As a result, SYK, JAK2 and ITK were activated. CONCLUSION: This study provides a new approach to systematically study and predict the therapeutic mechanism for ASR based on interactome analysis towards biological process with experimental validations.
Assuntos
Angelica sinensis/química , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hematopoese/efeitos dos fármacos , Raízes de Plantas/química , Animais , Medula Óssea/efeitos dos fármacos , Janus Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Tirosina Quinases/metabolismo , Quinase Syk/metabolismoRESUMO
The potential toxicity of herbal drugs, particularly drug-induced liver injury (DILI), has received extensive attention as the use of Chinese herbal medicine has rapidly increased globally. As a classic Chinese patent medicine, Zhuang Gu Guan Jie Wan (ZGGJW) has been brought into focus recently because of its satisfactory therapeutic effects on osteoarthritis (OA) as well as its unanticipated side effects. This study aimed to decipher the puzzling phenomenon of liver injury developing in response to ZGGJW that varies by the subtype of OA. Normal, anterior cruciate ligament transaction (ACLT) and partial medial meniscectomy (MMx) induced OA and ovariectomy combined with ACLT and partial MMx induced rat models were used and treated orally with ZGGJW or distilled water for 30 days. The results from histopathology, biochemistry, and immunohistochemistry showed that ZGGJW induced liver injury, increased the level of malondialdehyde (MDA), and decreased the levels of total antioxidation capability (T-AOC), superoxide dismutase (SOD), interleukin-22 (IL-22), and signal transducer and activator of transcription factor 3 (STAT3) in the liver of normal rats, while liver injury was alleviated and showed different tendencies in the above markers for ACLT and partial MMx induction rats and ovariectomy combined with ACLT and partial MMx induction rats after ZGGJW treatment. In the OA disease states, hepatic injury induced by ZGGJW could be associated with an impairment in antioxidant capacity and the high levels of IL-22 and STAT3 after ZGGJW treatment may be responsible for the slight hepatic injury of ZGGJW based on the subtype of OA. This study provides a novel approach to better understanding of the risks and limitations when using potentially toxic Chinese patent medicine in clinical applications.
RESUMO
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating inflammatory cells and demyelinating lesions, and T helper (Th) cells play critical roles in the pathogenesis of MS. There is still lack of effective treatments currently. Pien Tze Huang (PZH), a traditional Chinese medicine formula, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. However, whether PZH can be used to treat MS is still obscure. This study aimed to investigate the possible therapeutic effect and the underlying action mechanism of PZH in relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mice. Female SJL/J mice were immunized with myelin proteolipid protein 139-151 (PLP139-151) and pertussis toxin to establish RR-EAE model. Mice were then randomly divided into normal group, model group, PZH group and positive control group (fingolimod, FTY-720), and drugs were orally administered for 60 days from the day 10 after immunization. Sera of mice were collected for ELISA detection. Tissues of CNS were harvested for hematoxylin-eosin (H-E) and luxol fast blue (LFB) staining. Furthermore, Th1, Th17 cells and their related cytokines in the CNS were detected by flow cytometry and quantitative real-time PCR, respectively. Proteins involved in STAT and NF-κB signaling pathways were detected by western blot. The results showed that PZH-treated mice displayed mild or moderate clinical symptoms compared with untreated EAE mice that exhibited severe clinical symptoms. PZH remarkably reduced inflammatory cell infiltration and myelin damage in the CNS of EAE mice. It markedly down-regulated the levels of IFN-γ and IL-17A in sera of EAE mice. Moreover, PZH could reduce the percentages of Th1 and Th17 cells. It also suppressed the production of transcription factors ROR-γt and T-bet as well as the mRNA levels of their downstream pro-inflammatory cytokines, such as IFN-γ and IL-17A. Furthermore, PZH could inhibit the phosphorylation of some key proteins in the STAT and NF-κB signaling pathways. In conclusion, the study demonstrated that PZH had a therapeutic effect on RR-EAE mice, which was associated with the modulation effect on Th1 and Th17 cells.
RESUMO
Rheumatoid arthritis (RA) is a type of chronic systemic inflammatory disease; it has a very complicated pathogenesis, and multiple pathological changes are implicated. Traditional Chinese medicine (TCM) like Tripterygium wilfordii Hook. F. or Sinomenium acutum (Thunb.) Rehd et Wils. has been extensively used for centuries in the treatment of arthritic diseases and been reported effective for relieving the severity of RA. Hei-Gu-Teng Zhuifenghuoluo granule (HGT) which contains Periploca forrestii Schltr., Sinomenium acutum (Thunb.) Rehd et Wils., and Lysimachia paridiformis Franch. var. stenophylla Franch. was a representative natural rattan herb formula for the treatment of RA in China, but the mechanism has not been elucidated. This study aimed at exploring the mechanism of HGT on RA using the bioinformatics analysis with in vivo and in vitro experiment validation. The potential action mechanism was first investigated by bioinformatics analysis via Ingenuity Pathway Analysis (IPA) software. After that, we use experimental validation such as collagen-induced arthritis (CIA) mice model in vivo and U937 cell model in vitro. The bioinformatics results suggested that HGT may have anti-inflammatory characteristic on RA and IL-12 signaling pathway could be the potential key trigger. In vivo experiments demonstrated that HGT ameliorated the symptoms in CIA mice and decreased the production of inflammatory cytokines in both mice ankle joints and serum. Furthermore, HGT effectively inhibited the activation of IL-12R and STAT4 on IL-12 signaling pathway. In vitro experiments showed that HGT inhibited the production of IL-12R and STAT4 induced by IL-12 in lipopolysaccharide- (LPS-) stimulated U937 cells. Moreover, IL-12R knockdown was able to interfere with the inhibition effects of HGT on the production of these cytokines. Our results confirmed the anti-inflammatory property of HGT, which was attributed to its inhibition on IL-12 signaling pathway.