Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123951, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604305

RESUMO

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.


Assuntos
Metais Pesados , Microalgas , Fosfatos , Simbiose , Águas Residuárias , Poluentes Químicos da Água , Metais Pesados/metabolismo , Águas Residuárias/química , Fosfatos/farmacologia , Fosfatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Zinco
2.
Environ Pollut ; 337: 122539, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699452

RESUMO

Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system. Results showed that the removal efficiencies of chemical oxygen demand, NH4+-N and total phosphorus decreased by 3.0%, 24.0% and 14.3% under TCS stress. In contrast, there were no significant decrease on the removal effect of total nitrogen. Mechanism analysis showed that both the growth rate of microorganisms and the nutrients retention capacity of extracellular polymeric substances were decreased. The intracellular accumulation for nitrogen and phosphorus was promoted due to the increased cytomembrane permeability caused by lipid peroxidation. Moreover, microalgae were dominant in MABS system with ratio between microalgae and bacteria of more than 5.49. The main genus was Parachlorella, with abundance of more than 90%. Parachlorella was highly tolerant to TCS, which might be conductive to maintain its survival. This study revealed the nutrients pathways of MABS system under TCS stress, and helped to optimize the operation of MABS system.


Assuntos
Anti-Infecciosos , Microalgas , Triclosan , Triclosan/análise , Microalgas/metabolismo , Nitrogênio/análise , Fósforo/análise , Simbiose , Bactérias/metabolismo , Biomassa
3.
Bioresour Technol ; 331: 125010, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33773415

RESUMO

This study reported the role and significance of extracellular polymeric substances (EPSs) on nutrients storage and transfer in an algal-bacteria symbiosis sludge (ABSS) system for wastewater treatment, and the novel algae-based sequencing batch suspended biofilm reactor (A-SBSBR, Ra) was selected as model of ABSS system. Results showed that compared to conventional SBSBR, the EPS of Ra performed better storage for NO2--N, NO3--N, total phosphorus and PO43- -P, with increase ratios of 43.7%, 36.0%, 34.1% and 14.7% in sludge phase and 174.0%, 147.4%, 150.4% and 122.0% in biofilm phase, respectively. The analysis of mechanisms demonstrated that microalgae active transport and uptake for divalent cations could enhance their local concentrations around ABS flocs and partially neutralized negative charge of EPSs, and more anions related to nutrients were absorbed in EPSs. Moreover, O2 produced by microalgae photosynthesis enhanced bacteria activity and improved the production of EPSs in both sludge and biofilm phases.


Assuntos
Esgotos , Águas Residuárias , Bactérias , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Nutrientes , Simbiose , Eliminação de Resíduos Líquidos
4.
Bioresour Technol ; 265: 422-431, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29933190

RESUMO

A novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor (A-SBSBR) was developed for simultaneously enhanced nitrogen (N) and phosphorus (P) removal from domestic wastewater. Results showed that the total N (TN) and P (TP) removal efficiencies in A-SBSBR increased to 69.91% and 94.78%, respectively. The mechanism analysis indicated that TN removal mainly occurred at non-aeration stage, and TP removal happened during the whole cycle in A-SBSBR. Compared to control SBSBR, TN removal by denitrification and anabolism and TP removal by anabolism in A-SBSBR increased by 12.70%, 7.64% and 50.13%, respectively. The Chlorophyll a accumulation in biofilm increased to 4.80 ±â€¯0.08 mg/g. Algae related to Chlorella and Scenedesmus and bacteria related to Flavobacterium, Micropruina and Comamonadaceae were enriched in A-SBSBR and responsible for the enhanced nutrients removal effect. This study may provide a new solution to achieve nutrients removal enhancement from wastewater.


Assuntos
Biofilmes , Simbiose , Águas Residuárias , Reatores Biológicos , Chlorella , Clorofila , Clorofila A , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
5.
Bioresour Technol ; 250: 185-190, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29172182

RESUMO

This study proposed a potential strategy for enhancement of nutrients removal from domestic wastewater by adding algae to sequencing batch biofilm reactor (SBBR) to form a novel algal-bacterial symbiosis (ABS) system. Results indicated that the algae-assisted SBBR increased the total nitrogen and phosphorus removal efficiencies from 38.5% to 65.8%, and from 31.9% to 89.3%, respectively. The carriers fixed at the top of the reactor were favorable for both formation of ABS system and algae enrichment. The chlorophyll-a increased to 3.59 mg/g at stable stage, which was 4.07 times higher than that in suspension. Moreover, the bio-carrier replacement and sludge discharge were independent, indicating that the sludge and algae retention time could be separated. The mechanisms analysis suggested that the enhanced nitrogen and phosphorus mainly attributed to the enrichment of both algae biomass and total biomass in biofilm. This study highlights the significance of developing ABS system for wastewater treatment.


Assuntos
Nitrogênio , Fósforo , Águas Residuárias , Biofilmes , Reatores Biológicos , Eliminação de Resíduos Líquidos
6.
Bioresour Technol ; 222: 217-225, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27718404

RESUMO

This study aimed to clarify phosphorus (P) fractions in waste activated sludge (WAS) and explore release performance and enhancement mechanism of different P species related to pH. Results showed that inorganic P (IP) was the major P fraction in raw sludge (87.86% of total solid P), and non-apatite inorganic P (NAIP), the most labile P forms, occupied 81.30% of IP, suggesting that WAS could be selected as potential substitution of phosphate rock. The optimized acid and alkaline conditions were pH=4 and pH=12 for molybdate reactive P accumulation, increased by 311.20mg/L and 479.18mg/L compared to raw sludge, which were 3.80 and 5.84 times higher than that of control, respectively. The mechanism study demonstrated that high pH promoted NAIP release, and apatite P was sensitive to low pH. Moreover, the releasable and recoverable P depended on both fractions of different P species in sludge and pH adjustment for sludge treatment.


Assuntos
Fósforo/química , Esgotos/química , Apatitas , Concentração de Íons de Hidrogênio , Fosfatos/química
7.
Bioresour Technol ; 202: 59-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700759

RESUMO

This study investigated the role of extracellular polymeric substances (EPSs) in enhanced performance of phosphorus (P) release from waste activated sludge (WAS) by adding rhamnolipid (RL). Results showed that compared to WAS without pretreatment, the released PO4(3-)-P increased with RL addition from 0 to 0.2 g/gTSS (total suspended solid), and increased by 208% under the optimal condition (0.1 g RL/g TSS and 72-h fermentation time). The cumulative PO4(3-)-P was better fitted with pseudo-first-order kinetic model. Moreover, the contents of metal ions increased in liquid but decreased in EPSs linearly with RL addition increasing, and WAS solubilizations were positively correlated with the released metal ions. The enhanced total dissolved P mainly came from cells and others (69.39%, 2.27-fold higher than that from EPSs), and PO4(3-)-P was the main species in both liquid and loosely bound EPSs, but organic P should be non-negligible in tightly bound EPSs.


Assuntos
Biopolímeros/farmacologia , Espaço Extracelular/química , Glicolipídeos/farmacologia , Fósforo/isolamento & purificação , Esgotos/química , Eliminação de Resíduos Líquidos , Cinética , Modelos Teóricos , Fosfatos/isolamento & purificação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA