Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 6: 37435, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886210

RESUMO

Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction.


Assuntos
Tecido Adiposo Marrom/metabolismo , Peso Corporal/genética , Metabolismo Energético/genética , Hipotálamo/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Animais , Restrição Calórica/métodos , Expressão Gênica , Heterozigoto , Homozigoto , Masculino , Fenótipo , Condicionamento Físico Animal , Ratos , Ratos Transgênicos , Receptor Tipo 4 de Melanocortina/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
FASEB J ; 28(3): 1499-510, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24344330

RESUMO

Hyperthyroidism causes increased energy intake and expenditure, although anorexia and higher weight loss have been reported in elderly individuals with hyperthyroidism. To determine the effect of age on energy homeostasis in response to experimental hyperthyroidism, we administered 200 µg tri-iodothyronine (T3) in 7- and 27-mo-old rats for 14 d. T3 increased energy expenditure (EE) in both the young and the old rats, although the old rats lost more weight (147 g) than the young rats (58 g) because of the discordant effect of T3 on food intake, with a 40% increase in the young rats, but a 40% decrease in the old ones. The increased food intake in the young rats corresponded with a T3-mediated increase in the appetite-regulating proteins agouti-related peptide, neuropeptide Y, and uncoupling protein 2 in the hypothalamus, but no increase occurred in the old rats. Evidence of mitochondrial biogenesis in response to T3 was similar in the soleus muscle and heart of the young and old animals, but less consistent in old plantaris muscle and liver. Despite the comparable increase in EE, T3's effect on mitochondrial function was modulated by age in a tissue-specific manner. We conclude that older rats lack compensatory mechanisms to increase caloric intake in response to a T3-induced increase in EE, demonstrating a detrimental effect of age on energy homeostasis.


Assuntos
Fatores Etários , Metabolismo Energético , Homeostase , Hormônios Tireóideos/administração & dosagem , Animais , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/metabolismo , Ingestão de Alimentos , Hipertireoidismo/metabolismo , Hipotálamo/fisiologia , Masculino , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA