Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 45, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167725

RESUMO

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.


Assuntos
Ácidos Graxos Ômega-3 , Doenças Metabólicas , Camundongos , Humanos , Animais , Lipogênese , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Triglicerídeos/metabolismo , Ácidos Graxos , Dieta Hiperlipídica/efeitos adversos
2.
Nutrients ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092056

RESUMO

Dietary fibers are fermented by gut bacteria into the major short chain fatty acids (SCFAs) acetate, propionate, and butyrate. Generally, fiber-rich diets are believed to improve metabolic health. However, recent studies suggest that long-term supplementation with fibers causes changes in hepatic bile acid metabolism, hepatocyte damage, and hepatocellular cancer in dysbiotic mice. Alterations in hepatic bile acid metabolism have also been reported after cold-induced activation of brown adipose tissue. Here, we aim to investigate the effects of short-term dietary inulin supplementation on liver cholesterol and bile acid metabolism in control and cold housed specific pathogen free wild type (WT) mice. We found that short-term inulin feeding lowered plasma cholesterol levels and provoked cholestasis and mild liver damage in WT mice. Of note, inulin feeding caused marked perturbations in bile acid metabolism, which were aggravated by cold treatment. Our studies indicate that even relatively short periods of inulin consumption in mice with an intact gut microbiome have detrimental effects on liver metabolism and function.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Inulina/efeitos adversos , Fígado/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/sangue , Bilirrubina/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colesterol/análise , Colesterol/sangue , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Abrigo para Animais , Inulina/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temperatura
3.
Cell Metab ; 23(3): 441-53, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853749

RESUMO

FGF21 decreases plasma triglycerides (TGs) in rodents and humans; however, the underlying mechanism or mechanisms are unclear. In the present study, we examined the role of FGF21 in production and disposal of TG-rich lipoproteins (TRLs) in mice. Treatment with pharmacological doses of FGF21 acutely reduced plasma non-esterified fatty acids (NEFAs), liver TG content, and VLDL-TG secretion. In addition, metabolic turnover studies revealed that FGF21 facilitated the catabolism of TRL in white adipose tissue (WAT) and brown adipose tissue (BAT). FGF21-dependent TRL processing was strongly attenuated in CD36-deficient mice and transgenic mice lacking lipoprotein lipase in adipose tissues. Insulin resistance in diet-induced obese and ob/ob mice shifted FGF21 responses from WAT toward energy-combusting BAT. In conclusion, FGF21 lowers plasma TGs through a dual mechanism: first, by reducing NEFA plasma levels and consequently hepatic VLDL lipidation and, second, by increasing CD36 and LPL-dependent TRL disposal in WAT and BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Hipolipemiantes/farmacologia , Lipoproteínas VLDL/metabolismo , Triglicerídeos/sangue , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Feminino , Fatores de Crescimento de Fibroblastos/uso terapêutico , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Nat Commun ; 6: 7235, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26011238

RESUMO

Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing ß1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Guanilato Ciclase/metabolismo , Morfolinas/uso terapêutico , Obesidade/tratamento farmacológico , Pirimidinas/uso terapêutico , Adipócitos/efeitos dos fármacos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Obesidade/prevenção & controle , Pirimidinas/farmacologia , Termogênese , Redução de Peso
5.
Curr Opin Lipidol ; 23(3): 190-195, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22449813

RESUMO

PURPOSE OF REVIEW: The finding that brown adipose tissue (BAT) is present in adults brought BAT physiology into the focus of many researchers interested in energy metabolism. Here, we review recent insight into how BAT develops, functions and might help to treat metabolic disorders in humans. RECENT FINDINGS: BAT is under control of the nervous system, and several pathways have been identified that allow direct manipulation of BAT biology. In addition, some brown adipocytes arise from a distinct subset of white adipocyte precursors and studies were performed that characterize the development of these 'brite' adipocytes. Importantly, progress has been made in understanding how BAT takes up and dissipates nutrients that in metabolic disorders are present in excess. Finally, as it seems that BAT activity declines with age and obesity, we review findings that might shed light on how humans could sustain or increase BAT activity, thus preventing or treating obesity, hyperlipidemia and type 2 diabetes. SUMMARY: BAT is a powerful organ that controls the development of metabolic disease. These powers are boosted by mechanisms that turn white into brown fat and enhance lipid flux into BAT. However, in humans, it remains unclear what was the first: metabolic disease or decreased BAT activity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Adipócitos Marrons/metabolismo , Adipócitos Marrons/patologia , Animais , Humanos , Hipotálamo/fisiopatologia , Doenças Metabólicas/fisiopatologia
6.
Lipids ; 43(11): 1039-51, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18763007

RESUMO

Changes in fatty acid metabolism associated with insulin resistance have been described in rats and humans but have not been well characterized in the frequently used mouse model of diet-induced obesity. To analyse the early phase as well as established insulin resistance, C57BL/6 mice were placed for 1 or 16 weeks on a high fat diet (1w-HFD, 16w-HFD). Endocrine and metabolic parameters indicated that 1w-HFD mice showed a moderate but significant induction of insulin resistance while 16w-HFD mice exhibited profound obesity-associated insulin resistance and dyslipidemias. Significant alterations in fatty acid composition were observed in plasma and liver in both groups. Liver phospholipid-associated arachidonate and docosahexaenoate were increased in both 1w-HFD and 16w-HFD mice, possibly due to increased expression of the desaturases Fads1 and Fads2. Unexpectedly, SCD1 activity and gene expression in liver were decreased in the 1w-HFD group accompanied by diminished total hepatic lipid levels, while they were increased in chronically fed mice. Our data indicate that the early phase of HFD-induced insulin resistance is not associated with elevated liver lipid concentration. Furthermore, the early and persistent rise of arachidonate and docosahexaenoate indicates that insulin resistance is not due to insufficient availability (or concentrations) of polyunsaturated fatty acids as postulated previously.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Triglicerídeos/metabolismo , Animais , Ácido Araquidônico/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Bone ; 43(2): 230-237, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18538644

RESUMO

Dietary lipids and lipophilic vitamins are transported by postprandial lipoproteins and are required for bone metabolism. Despite that, it remains unknown whether bone cells are involved in the uptake of circulating postprandial lipoproteins in vivo. The current study was performed to investigate a putative participation of bone in the systemic postprandial lipoprotein metabolism in mice, to identify potentially involved cell type populations and to analyze whether lipoprotein uptake affects bone function in vivo. As a model for the postprandial state, chylomicron remnants (CR) were injected intravenously into mice. Next to the liver and compared to other organs, bone appeared to be the second most important organ for the clearance of radiolabeled CR particles from the circulation in vivo. In addition, uptake of radiolabeled CR by primary murine osteoblasts and hepatocytes was quantified to be in a similar range in vitro. A complementary approach with fluorescently labeled CR and immunohistochemical staining for apoE proved that intact CR particles were taken up into bone and liver. Electron microscopy localization studies of bone sections revealed CR uptake into sinusoidal endothelial cells, macrophages and osteoblasts. The relative amount of radiolabeled CR uptake into femoral cortical bone, representing predominantly osteoblasts, and bone marrow, representing predominantly non-osteoblast cells, was within the same range. Most importantly, the injection of vitamin K1-enriched CR resulted in an increase of the degree of osteocalcin carboxylation in vivo while total osteocalcin concentrations remained unaffected, giving functional proof that osteoblasts process CR in vivo. In conclusion, here we demonstrate that bone is involved in the postprandial lipoprotein metabolism in mice. Osteoblasts participate in CR clearance from the circulation, which has a direct impact on the secretory function of osteoblasts.


Assuntos
Osso e Ossos/metabolismo , Lipoproteínas/metabolismo , Osteoblastos/metabolismo , Período Pós-Prandial , Animais , Osso e Ossos/citologia , Osso e Ossos/ultraestrutura , Bovinos , Células Cultivadas , Quilomícrons/metabolismo , Quilomícrons/ultraestrutura , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Osteoblastos/citologia , Osteocalcina/sangue , Vitamina K 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA