Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Life Sci ; 336: 122284, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008208

RESUMO

Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.


Assuntos
Suplementos Nutricionais , Taurina , Recém-Nascido , Gravidez , Feminino , Criança , Camundongos , Animais , Humanos , Taurina/farmacologia , Puberdade , Encéfalo , Aminoácidos/farmacologia
2.
Heliyon ; 9(11): e22165, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053886

RESUMO

Background and objectives: Aluminum phosphide (AlP), known as "rice tablet," is widely used as an effective pesticide. However, AlP poisoning is a common cause of mortality in many countries, such as Iran. Unfortunately, there is no specific antidote for AlP toxicity to date. AlP releases phosphine gas when it is exposed to moisture or acid. Phosphine is a potent mitochondrial toxin that could significantly inhibit cellular energy metabolism. AlP poisoning is an emergency condition that needs instant and effective intervention. Dihydroxyacetone (DHA) is a simple saccharide used for several pharmacological as well as cosmetic purposes. Previously, we found that DHA could significantly prevent mitochondrial impairment induced by toxic agents such as cyanide and phosphine in various in vitro and in vivo experimental models. Methods: Hospitalized patients (n = 111) were evaluated for eligibility criteria. Among these patients, n = 35 cases were excluded due to incomplete data (n = 11) and suspicion of poisoning with poisons other than AlP (n = 24). Meanwhile, n = 76 cases with confirmed AlP poisoning were included in the study. AlP-poisoned patients who did not receive DHA (n = 18) were used as the control group.Patients (n = 58) received at least one dose of DHA (500 ml of 5 % DHA solution w/v, i.v.) as an adjuvant therapy in addition to the routine treatment of AlP poisoning. Arterial blood gas (ABG), blood pH, bicarbonate levels, and other vital signs and biochemical measurements were monitored. Moreover, the mortality rate and hospitalization time were evaluated in DHA-treated and AlP-poisoned patients without DHA administration. Several biomarkers were assessed before (upon hospitalization) and after DHA treatment. The routine tests for AlP-poisoned patients in this study were the measurement of electrolytes (K+ and Na+), WBC, RBC, hemoglobin, INR, carbonate (HCO3), blood pH, PaCO2, and PaO2 and SGPT, SGOT, BUN, Cr. Results: Upon patients' admission, significant decreases in blood pH (acidosis), blood PaO2, and HCO3 levels were the hallmarks of AlP poisoning. It was found that DHA significantly alleviated biomarkers of AlP poisoning and tremendously enhanced patients' survival rate (65.52 % in DHA-treated vs 33.34 % in the control group) compared to patients treated based on hospital routine AlP poisoning protocols (no DHA). No significant adverse effects were evident in DHA-treated patients in the current study. Interpretation and conclusions: These data suggest that parenteral DHA is a novel and effective antidote against AlP poisoning to be used as an adjuvant in addition to routine supportive treatment. Trial registration: IR.SUMS.REC.1394.102.

3.
Drug Chem Toxicol ; : 1-10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058159

RESUMO

Aflatoxins, a group of toxic secondary metabolites produced by Aspergillus species, pose significant threats to human health due to their potent carcinogenic, mutagenic, and immunosuppressive properties. Chronic exposure to these contaminants, commonly found in staple foods such as maize and groundnuts, has been linked to an increased risk of liver cancer, growth impairment, and immune dysfunction. Several agents, such as calcium montmorillonite clay and Lactobacillus rhamnosus GG, have shown promise in reducing aflatoxin bioavailability and alleviating its toxic effects. Additionally, dietary supplements such as chlorophyllin, selenium, and N-acetylcysteine have demonstrated potential as adjuvants to counteract aflatoxin-induced oxidative stress and support liver function. In this treatise, some of the most discussed approaches to mitigating aflatoxin effects are explored in terms of their efficacy, safety, and potential mechanisms of action, which include direct aflatoxin binding, detoxification, cellular antioxidative, and hepatocellular protection properties. However, the effectiveness of these strategies can be influenced by various factors, such as dose, duration of exposure, and individual susceptibility. Therefore, further research is needed to optimize these interventions and develop new, targeted therapies for the prevention and treatment of aflatoxin-related diseases. This review aims to provide a comprehensive analysis of 18 pharmaceutical, nutraceutical, supplement, and probiotic strategies currently available for mitigating the deleterious effects of chronic aflatoxin exposure in humans and animal models.

4.
BMC Complement Med Ther ; 23(1): 243, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461012

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a worldwide public health problem affecting millions of people. Probiotics and postbiotics are associated with valuable compounds with antibacterial, anti-inflammatory, and immunomodulatory effects, preserving renal function in CKD patients. The current study is aimed to evaluate the efficacy of Limosilactobacillus fermentum (L. fermentum) and its postbiotic in an animal model of cisplatin-induced CKD. METHODS: The animals were divided into four experimental groups (normal mice, CKD mice with no treatment, CKD mice with probiotic treatment, and CKD mice with postbiotic treatment). CKD mice were induced by a single dose of cisplatin 10 mg/kg, intraperitoneally. For 28 days, the cultured probiotic bacteria and its supernatant (postbiotic) were delivered freshly to the related groups through their daily water. Then, blood urea nitrogen (BUN) and creatinine (Cr) of plasma samples as well as glutathione (GSH), lipid peroxidation, reactive oxygen species, and total antioxidant capacity of kidneys were assessed in the experimental mice groups. In addition, histopathological studies were performed on the kidneys. RESULTS: Application of L. fermentum probiotic, and especially postbiotics, significantly decreased BUN and Cr (P < 0.0001) as well as ROS formation and lipid peroxidation levels (P < 0.0001) along with increased total antioxidant capacity and GSH levels (P < 0.001). The histopathologic images also confirmed their renal protection effect. Interestingly, the postbiotic displayed more effectiveness than the probiotic in some assays. The improvement effect on renal function in the current model is mainly mediated by oxidative stress markers in the renal tissue. CONCLUSIONS: In conclusion, it was found that the administration of L. fermentum probiotic, and particularly its postbiotic in cisplatin-induced CKD mice, showed promising effects and could successfully improve renal function in the animal model of CKD. Therefore, probiotics and postbiotics are considered as probably promising alternative supplements to be used for CKD.


Assuntos
Limosilactobacillus fermentum , Insuficiência Renal Crônica , Camundongos , Animais , Antioxidantes , Cisplatino , Modelos Animais , Insuficiência Renal Crônica/tratamento farmacológico , Glutationa
5.
Reprod Biol ; 22(3): 100683, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932513

RESUMO

Phytoestrogens are considered to be endocrine disruptors, since they can alter the endocrine system, thus disturbing many reproductive events. The intake of diets containing a high content of phytoestrogens has increased worldwide in human populations and in domestic animals. Phytoestrogens in maternal blood can pass through the placenta to the fetus in high amounts and can have long-term organizational effects. Mesquite (Prosopis sp) is a leguminous plant widely used to feed several livestock species, and is also used in the human diet. In this study we assessed the effects of exposure to mesquite pod extract during the periconception and pregnancy periods on the reproduction of male and female descendants. The females of three experimental groups received one of the following treatments: 1) vehicle injection; 2) mesquite pod extract or 3) the isoflavone daidzein during the periconception and pregnancy periods. Estrous cyclicity, sexual behavior and hormones, as well as uterine and vaginal epithelia were evaluated in the female descendants. In the males, sexual behavior and hormones, apoptosis in testicular cells and sperm quality were evaluated. In females the following was observed: alterations in estrous cycles, decreased sexual behavior, estradiol and progesterone levels, increased uterine and vaginal epithelia. In males, we observed a decrease in sexual behavior, testosterone and sperm quality, and apoptosis increased in testicular cells. All these effects were similar to those caused by daidzein. These results indicate that prenatal exposure to mesquite pod extract or daidzein, administered to females before and during pregnancy, can disrupt normal organizational-activational programming of reproductive physiology in female and male descendants.


Assuntos
Isoflavonas , Prosopis , Animais , Estradiol , Feminino , Humanos , Masculino , Fitoestrógenos , Extratos Vegetais , Gravidez , Ratos , Reprodução , Sementes
6.
Clin Exp Hepatol ; 8(3): 195-210, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36685263

RESUMO

Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.

7.
Biol Trace Elem Res ; 200(5): 2174-2182, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34392478

RESUMO

The possibility of employing FeOOH nano-ellipsoids as a novel shape nano-based iron supplement was investigated. Ferrous sulfate and nano-ellipsoids were daily administered by gavage at low and high dosages. After 1 month of treatment, the hematologic parameters along with serum and organs' iron contents were measured. Liver enzymes, total serum bilirubin, and LDH level were assayed to evaluate any possible toxicity. More investigation was also performed by organ index calculation and also pathologic studies. It was found that nano-ellipsoids are an effective iron supplement to improve iron-related blood parameters. Interestingly, low-dose nano-ellipsoids were even more effective than high-dose ferrous sulfate. Nano-ellipsoids had no considerable impact on the liver enzymes and serum bilirubin. Meanwhile, high-dose ferrous sulfate significantly increases liver enzyme activity. The increased serum LDH was also the only concern in the groups that were treated with high-dose ferrous sulfate and nano-ellipsoids. Pathologic evaluations revealed some signs of liver inflammation after supplementation with high dose nano-ellipsoids and also ferrous sulfate. Overall, these data indicate FeOOH nano-ellipsoids as a novel shape iron supplement to be employed at low dosage but with greater beneficial effects than high-dose ferrous sulfate.


Assuntos
Anemia Ferropriva , Bilirrubina , Suplementos Nutricionais , Compostos Ferrosos , Humanos , Ferro/uso terapêutico , Fígado
8.
Artigo em Inglês | MEDLINE | ID: mdl-34917159

RESUMO

The wound is a break in the integrity of the skin produced by injury, illness, or operation. Wound healing is an essential dynamic biological/physiological process that occurs in response to tissue damage. The huge health, economic, and social effects of wounds on patients and societies necessitate the research to find novel potential therapeutic agents in order to promote wound healing. Postbiotics, the newest member of the biotics family, are valuable functional bioactive substances produced by probiotics through their metabolic activity, which have several beneficial properties, including immunomodulatory, anti-inflammatory, antimicrobial, and angiogenesis characteristics, resulting in acceleration of wound healing. In the current study, three topical cold cream formulations containing postbiotics obtained from Lactobacillus fermentum, Lactobacillus reuteri, or Bacillus subtilis sp. natto probiotic strains were prepared. The effectiveness and wound healing activity of the developed postbiotics cold cream formulations were investigated compared to cold cream without postbiotics and no treatment via wound closure investigation, hydroxyproline content assay, and histological assessment in 25 Sprague Dawley rats divided into five groups. Interestingly, analysis of the results revealed that all three formulations containing postbiotics significantly accelerated the wound healing process. However, in general, the Bacillus subtilis natto cold cream manifested a better wound healing property. The pleasing wound healing characteristics of the topical postbiotics cold creams through the in vivo experiment suggest that formulations containing postbiotics can be considered as a promising nominee for wound healing approaches.

9.
Biomed Res Int ; 2021: 5526644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212031

RESUMO

Wallflower (Erysimum cheiri) is employed as a popular herbal drug in traditional Persian medicine. Topical formulations including cerates, lotions, sitz baths, and poultices for inflammatory disorders such as arthritis, anal fissure, endometriosis, and mastitis are known. However, there is no monograph in current pharmacopoeia for the wallflower drug. The present study is aimed to screen in vitro anti-inflammatory activity of wallflower and perform quality control and characterization tests for different organs of the herb. In this regard, albumin denaturation activity, macroscopic and microscopic, phytochemical, HPTLC, and FT-IR characteristics were investigated. Wallflower showed strong anti-inflammatory activity compared to diclofenac sodium. The root (1.25, 2.5, and 5 mg/mL) and flower (10 mg/mL) extract exhibited higher anti-inflammatory activities than that of other plant organs at the same concentrations. Moreover, total ash was found higher in aerial parts (21.52 ± 0.06%) than flower (11.01 ± 0.03%), root (5.03 ± 0.03%), and seed (6.95 ± 0.06%), while water-soluble ash was higher in seed (34.89 ± 0.26%) than flower (5.00 ± 0.03%), aerial parts (7.16 ± 0.06%), and root (5.04 ± 0.01%). Acid-insoluble ash and sulphated ash were higher in root (9.50 ± 0.04%) and aerial part (28.37 ± 0.57%), respectively. In addition, loss on drying was ranged from 2.20 ± 0.20% in flowers to 6.00 ± 0.10% in aerial parts. On the other hand, HPTLC analysis verified cardenolide compounds in all organs of the herb, and quercetin was detected in the flavonoid fingerprint of acid hydrolysed flowers. According to FT-IR results, the observed spectral region at ~3500 cm-1 attributed to -OH stretching vibration. Also, C-H (~2900-2950 cm-1), isothiocyanate (~2340 cm-1), -C=O (~1740 cm-1), conjugated C=C of the aromatic ring (~1650 cm-1), and structure of the aromatic group (~1200-1000 cm-1) were monitored. This work is the first study to the best of our knowledge, suggesting wallflower as a potential drug candidate with the basis for a monograph in addition to initial in vitro anti-inflammatory data.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Erysimum/química , Flavonoides/química , Flavonoides/farmacologia , Flores/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Controle de Qualidade , Quercetina/química , Quercetina/farmacologia , Sementes/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
Stress ; 24(2): 213-228, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32510264

RESUMO

Cholestasis is a multifaceted clinical complication. Obstructive jaundice induced by bile duct ligation (BDL) is known as an animal model to investigate cholestasis and its associated complications. N-acetyl cysteine (NAC) is an antioxidant, radical scavenger, and thiol reductant widely investigated for its cytoprotective properties. The current investigation was designed to evaluate the role of NAC treatment on biomarkers of oxidative stress and organ histopathological alterations in a rat model of cholestasis/cirrhosis. BDL animals were supplemented with NAC (100 and 300 mg/kg, i.p, 42 consecutive days). Biomarkers of oxidative stress in the liver, brain, heart, skeletal muscle, lung, serum, and kidney tissue, as well as organ histopathological changes, were monitored. A significant increase in reactive oxygen species, lipid peroxidation, and protein carbonylation were detected in different tissues of BDL rats. Moreover, tissue antioxidant capacity was hampered, glutathione (GSH) reservoirs were depleted, and oxidized glutathione (GSSG) levels were significantly increased in the BDL group. Significant tissue histopathological alterations were evident in cirrhotic animals. It was found that NAC treatment (100 and 300 mg/kg, i.p) significantly mitigated biomarkers of oxidative stress and alleviated tissue histopathological changes in cirrhotic rats. These data represent NAC as a potential protective agent with therapeutic capability in cirrhosis and its associated complications.HIGHLIGHTSCholestasis is a multifaceted clinical complication that affects different organsOxidative stress plays a pivotal role in cholestasis-associated complicationsTissue antioxidant capacity is hampered in different tissues of cholestatic animalsAntioxidant therapy might play a role in the management of cholestasis-induced organ injuryNAC alleviated biomarkers of oxidative stress in cholestatic animalsNAC significantly improved tissues histopathological alterations in cholestatic rats.


Assuntos
Acetilcisteína , Estresse Psicológico , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Animais , Ductos Biliares/metabolismo , Ductos Biliares/cirurgia , Biomarcadores/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Ratos
11.
Clin Exp Hepatol ; 6(3): 207-219, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33145427

RESUMO

Cirrhosis-induced heart injury and cardiomyopathy is a serious consequence of this disease. It has been shown that bile duct ligated (BDL) animals could serve as an appropriate experimental model to investigate heart tissue injury in cirrhosis. The accumulation of cytotoxic chemicals (e.g., bile acids) could also adversely affect the heart tissue. Oxidative stress and mitochondrial impairment are the most prominent mechanisms of bile acid cytotoxicity. Taurine (Tau) is the most abundant non-protein amino acid in the human body. The cardioprotective effects of this amino acid have repeatedly been investigated. In the current study, it was examined whether mitochondrial dysfunction and oxidative stress are involved in the pathogenesis of cirrhosis-induced heart injury. Rats underwent BDL surgery. BDL animals received Tau (50, 100, and 500 mg/kg, i.p.) for 42 consecutive days. A significant increase in oxidative stress biomarkers was detected in the heart tissue of BDL animals. Moreover, it was found that heart tissue mitochondrial indices of functionality were deteriorated in the BDL group. Tau treatment significantly decreased oxidative stress and improved mitochondrial function in the heart tissue of cirrhotic animals. These data provide clues for the involvement of mitochondrial impairment and oxidative stress in the pathogenesis of heart injury in BDL rats. On the other hand, Tau supplementation could serve as an effective ancillary treatment against BDL-associated heart injury. Mitochondrial regulating and antioxidative properties of Tau might play a fundamental role in its mechanism of protective effects in the heart tissue of BDL animals.

12.
J Therm Biol ; 89: 102520, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364974

RESUMO

The present study was conducted to investigate the effects of four dietary fat types and two environmental temperatures on the hepatic mitochondrial energetic in male broilers exposed to heat stress. The birds were kept in two separate rooms at 24 °C or 36 °C from 32 to 42 d of age with four experimental groups in each room. The birds fed on the diets supplemented containing rich sources of long-chain saturated fatty acids (beef tallow), middle-length-chain saturated FA (coconut oil), monounsaturated FA (olive oil), or polyunsaturated FA (soybean oil) for ten days. At 36 °C, the highest body weight and lowest feed conversion ratio were recorded in the birds fed on the diets supplemented with coconut oil or beef tallow. Temperature and fat type significantly affected the activities of the mitochondrial electron transport chain complexes (P < 0.01). There was a significant interaction between the temperature and fat type (P < 0.01). Generally, electron transport chain complexes I-V enzymatic activities were decreased at 36 °C. The coconut oil-fed birds showed the highest complex I activity at both temperatures. The beef tallow-fed broilers showed the lowest complex II activity at 24 °C. In birds exposed to 36 °C, complex II activity was higher for birds fed saturated coconut oil or beef tallow than those feeding the unsaturated olive oil or soybean oil-supplemented diets. At 24 °C, the highest and lowest complex III activities were recorded for the coconut oil- and beef tallow-supplemented diets, respectively. At 36 °C, the activity of complex III was coconut oil > beef tallow > olive oil > soybean oil. At 24 °C, complex IV activity was highest in coconut oil- or soybean oil-fed broilers; and at 36 °C, complex IV showed the lowest activity in soybean oil-fed birds. The highest complex IV activity was observed in coconut oil-fed chickens followed by olive oil-fed and beef tallow-fed birds, respectively. At 24 or 36 °C, the highest and lowest complex V activity was observed in coconut oil-fed and soybean oil-fed chickens, respectively. ATP concentration and mitochondrial membrane potential were in the order of coconut oil > beef tallow > olive oil > soybean oil at both temperatures. Temperature and fat type significantly affected the avANT mRNA concentration. Exposure of broilers to 36 °C generally decreased the mRNA expression of avANT, with beef tallow- or coconut oil-supplemented birds showing a lower avANT mRNA expression than those receiving olive oil- or soybean oil-supplemented diets. These findings provide further information on the use of fat sources in the diet of heat stressed-broilers.


Assuntos
Galinhas/metabolismo , Metabolismo Energético , Ácidos Graxos Voláteis/farmacologia , Resposta ao Choque Térmico , Mitocôndrias Hepáticas/metabolismo , Óleos de Plantas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Aviárias/metabolismo , Suplementos Nutricionais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos Voláteis/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Óleos de Plantas/administração & dosagem
13.
Biol Trace Elem Res ; 198(2): 744-755, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32157632

RESUMO

FDA has approved iron oxide nanoparticles (IONs) coated with organic compounds as a safe material with less toxic effects compared with the naked metal ions and nanoparticles. In this study, the biological and physicochemical characteristics of a nanostructured iron-polysaccharide complexes (Nano-IPC) biosynthesized by Enterobacter sp. were evaluated. Furthermore, the serum biochemical parameters, tissue iron level, red blood cell parameters, and organ ferritin of rats were measured for investigating the effect of the Nano-IPCs in comparison with FeSO4 as a supplement for iron deficiency. The biosafety data demonstrated 35% increment of viability in Hep-G2 hepatocarcinoma cell lines when treated with nanoparticles (500 µg/mL) for 24 h. Besides, iron concentration in serum and tissue as well as the expression of ferritin L subunit in animals treated with the Nano-IPCs supplement were meaningfully higher than the FeSO4-supplemented and negative control animals. Moreover, the expression level of ferritin H subunit and biochemical factors remained similar to the negative control animals in the Nano-IPC-supplemented group. These results indicated that Nano-IPCs can be considered as a nontoxic supplement for patients carrying iron-deficiency anemia (IDA).


Assuntos
Anemia Ferropriva , Anemia Ferropriva/tratamento farmacológico , Animais , Enterobacter/metabolismo , Ferritinas , Humanos , Ferro/metabolismo , Polissacarídeos , Ratos
14.
Nutr Neurosci ; 23(9): 731-743, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30856059

RESUMO

Objective(s): Manganese (Mn) is an essential trace element physiologically incorporated in the structure of several vital enzymes. Despite its essentiality, excessive Mn exposure is toxic with brain tissue as the primary target organ. There is no specific and clinically available therapeutic/preventive option against Mn neurotoxicity. Carnosine is a neuropeptide with several physiological roles. The neuroprotective properties of this peptide have been evaluated in different experimental models. The current study was designed to investigate the effect of carnosine supplementation and its potential mechanisms of action in an animal model of Mn-induced neurotoxicity. Materials and Methods: Male C57BL/6 mice received Mn (100 mg/kg, s.c) alone and/or in combination with carnosine (10, 50, and 100 mg/kg, i.p). Several locomotor activity indices were monitored. Moreover, biomarkers of oxidative stress and mitochondrial function were assessed in the brain tissue of Mn-exposed animals. Results: Significant locomotor dysfunction was revealed in Mn-exposed animals. Furthermore, brain tissue biomarkers of oxidative stress were significantly increased, and mitochondrial indices of functionality were impaired in Mn-treated animals. It was found that carnosine supplementation (10, 50, and 100 mg/kg, i.p) alleviated the Mn-induced locomotor deficit. Moreover, this peptide mitigated oxidative stress biomarkers and preserved brain tissue mitochondrial functionality in the animal model of manganism. Conclusion: These data indicate that carnosine is a potential neuroprotective agent against Mn neurotoxicity. Antioxidative and mitochondria protecting effects of carnosine might play a fundamental role in its neuroprotective properties against Mn toxicity.


Assuntos
Antioxidantes/administração & dosagem , Carnosina/administração & dosagem , Manganês/toxicidade , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
15.
J Mater Chem B ; 7(34): 5211-5221, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31364687

RESUMO

Microbial exopolysaccharides (EPSs) have recently served as an efficient substrate for the production of biocompatible metal nanoparticles (NPs) given their favorable stabilizing and reducing properties due to the presence of polyanionic functional groups in their structure. In the present work, Pantoea sp. BCCS 001 GH was used to produce EPS-stabilized biogenic Fe NPs as a complex through a novel biosynthesis reaction. Physicochemical characterization of the EPS-Fe complex was performed, indicating high thermal stability, desirable magnetic properties due to the uniform distribution of the Fe NPs with the average size of ∼10 nm and spherical shape within the EPS matrix. In addition, the in vivo toxicity of the EPS-stabilized Fe NPs was evaluated to investigate their potential for the treatment of iron deficiency anemia. Biological blood parameters and organ histology studies confirmed very high safety of the biosynthesized composite, making EPS-Fe a suitable candidate with an economical and environment friendly synthesis method for a wide spectrum of potential fields in medicine.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Compostos de Ferro/farmacologia , Nanopartículas/química , Inquéritos Nutricionais , Pantoea/metabolismo , Polissacarídeos/farmacologia , Administração Oral , Animais , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/metabolismo , Humanos , Compostos de Ferro/administração & dosagem , Compostos de Ferro/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Tamanho da Partícula , Polissacarídeos/administração & dosagem , Polissacarídeos/biossíntese , Propriedades de Superfície
16.
Biol Trace Elem Res ; 190(2): 384-395, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30357569

RESUMO

Manganese (Mn) is a trace element involved in many physiological processes. However, excessive Mn exposure leads to neurological complications. Although no precise mechanism(s) has been found for Mn-induced neurotoxicity, oxidative stress and mitochondrial injury seem to play a relevant role in this complication. On the other hand, there is no protective strategy against Mn neurotoxicity so far. Taurine is an amino acid with significant neuroprotective properties. The current study was designed to evaluate the effect of taurine supplementation and its potential mechanism(s) of action in a mouse model of manganism. Animals were treated with Mn (100 mg/kg, s.c) alone and/or in combination with taurine (50, 100, and 500 mg/kg, i.p, for eight consecutive days). Severe locomotor dysfunction along with a significant elevation in brain tissue biomarkers of oxidative stress was evident in Mn-exposed mice. On the other hand, it was revealed that mitochondrial indices of functionality were hampered in Mn-treated animals. Taurine supplementation (50, 100, and 500 mg/kg, i.p) alleviated Mn-induced locomotor deficit. Moreover, this amino acid mitigated oxidative stress biomarkers and preserved brain tissue mitochondrial indices of functionality. These data introduce taurine as a potential neuroprotective agent against Mn neurotoxicity. Antioxidative and mitochondria protecting effects of taurine might play a fundamental role in its neuroprotective properties against Mn toxicity.


Assuntos
Modelos Animais de Doenças , Manganês/toxicidade , Fármacos Neuroprotetores/farmacologia , Taurina/farmacologia , Animais , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Injeções Subcutâneas , Locomoção/efeitos dos fármacos , Masculino , Manganês/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Taurina/administração & dosagem
17.
Biomed Pharmacother ; 109: 103-111, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30396066

RESUMO

Colistin (COL) belongs to the polymixin class of antibiotics used as the last line antibiotic against drug-resistant infections. However, nephrotoxicity is the major deleterious and dose-limiting side effect associated with COL therapy. Oxidative stress and mitochondrial impairment are suspected mechanisms involved in COL-induced nephrotoxicity. Taurine is one of the most abundant amino acids in the human body with antioxidant and mitochondria protecting properties. The current study was designed to evaluate the potential nephroprotective properties of taurine against COL-associated nephrotoxicity. Mice were treated with COL (15 mg/kg/day, i.v, for 7 consecutive days) alone or in combination with taurine (500 and 1000 mg/kg, i.p). Plasma biomarkers of nephrotoxicity in addition of kidney tissue markers of oxidative stress were evaluated. Additionally, kidney mitochondria were isolated, and several mitochondrial indices were assessed. The COL-associated renal injury was evident by a significant increase in plasma markers of renal injury including creatinine (Cr), and blood urine nitrogen (BUN). COL treatment also caused a significant increase in kidney reactive oxygen species (ROS) and lipid peroxidation (LPO). Renal GSH reservoirs and antioxidant capacity were also decreased in COL-treated animals. Mitochondrial parameters including mitochondrial dehydrogenase activity, membrane potential, GSH, and ATP were significantly decreased while mitochondrial LPO, permeabilization, and GSSG content were increased in the kidney of COL-treated mice. It was found that taurine (500 and 1000 mg/kg, i.p) treatment alleviated COL-induced oxidative stress and mitochondrial dysfunction in the kidney tissue. The data obtained from the current study suggest mitochondrial dysfunction and oxidative stress as fundamental mechanisms of renal injury induced by COL. On the other hand, taurine supplementation protected kidney through decreasing oxidative stress and regulating mitochondrial function.


Assuntos
Colistina/farmacologia , Nefropatias/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Nefropatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taurina/administração & dosagem , Taurina/toxicidade
18.
Biol Trace Elem Res ; 187(1): 151-162, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29767280

RESUMO

Lead (Pb)-induced reproductive toxicity is a well-characterized adverse effect associated with this heavy metal. It has been found that Pb exposure is associated with altered spermatogenesis, increased testicular degeneration, and pathological sperm alterations. On the other hand, it has been reported that Pb-induced reproductive toxicity is associated with increased reactive oxygen species (ROS) formation and diminished antioxidant capacity in the reproductive system. Hence, administration of antioxidants as protective agents might be of value against Pb-induced reproductive toxicity. This study was designed to investigate whether carnosine (CAR) and histidine (HIS) supplementation would mitigate the Pb-induced reproductive toxicity in male rats. Animals received Pb (20 mg/kg/day, oral, 14 consecutive days) alone or in combination with CAR (250 and 500 mg/kg/day, oral, 14 consecutive days) or HIS (250 and 500 mg/kg/day, oral, 14 consecutive days). Pb toxicity was evident in the reproductive system by a significant increase in tissue markers of oxidative stress along with severe histopathological changes, seminal tubule damage, tubular desquamation, low spermatogenesis index, poor sperm parameters, and impaired sperm mitochondrial function. It was found that CAR and HIS supplementation blunted the Pb-induced oxidative stress and mitochondrial dysfunction in the rat reproductive system. Thereby, antioxidative and mitochondria-protective properties serve as primary mechanisms for CAR and HIS against Pb-induced reproductive toxicity.


Assuntos
Carnosina/farmacologia , Histidina/farmacologia , Mitocôndrias/efeitos dos fármacos , Compostos Organometálicos/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Espermatozoides/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Carnosina/administração & dosagem , Suplementos Nutricionais , Histidina/administração & dosagem , Masculino , Mitocôndrias/metabolismo , Compostos Organometálicos/toxicidade , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Sprague-Dawley
19.
J Therm Biol ; 78: 1-9, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509623

RESUMO

Heat stress decreases performance of poultry. The novel strategies to maintain production level, or at least minimizing the decrease in productivity during hot days need to be elucidated. This study was conducted to determine the effect of four fat types on mitochondrial energetics in heat-stressed broilers. In experiment 1, nitrogen-corrected apparent metabolizable energy (AMEn) content of four supplemental fat sources, including olive oil, soybean oil, coconut oil and beef tallow, all supplemented at 3%, 6%, and 9% in the basal diet, was evaluated. The AMEn values of fats were determined as 9738.0 ± 137.9, 8949.0 ± 159.9, 7844.0 ±â€¯91.7, and 7368.0 ±â€¯190.3 kcal/kg for olive oil, soybean oil, coconut oil and beef tallow, respectively. In experiment 2, birds were kept in two separated rooms under 24 °C or 36 °C from 32 to 42 d of age. Each room consisted of four experimental groups. Birds in the experimental groups were fed on beef tallow-, coconut oil-, olive oil- or soybean oil-supplemented diets (factorial arrangement with two factors of fat types and environmental temperatures). The birds reared under 24 °C had higher final body weight (P < 0.01), weight gain (P < 0.01), feed intake (P < 0.05) and lower feed conversion ratio (P < 0.01) than the birds grown under 36 °C. There was a temperature by fat type interaction effect on mitochondrial attributes. At 36 °C, in birds fed on coconut oil- or beef tallow-supplemented diets, the expression levels of avUCP and avANT mRNA were lower (P < 0.05) but that of HSP70 mRNA was higher (P < 0.01) in comparison with the birds feeding on the olive oil- or soy oil-supplemented diets. An interaction effect was recorded between the temperature and fat type for ATP concentration and mitochondrial membrane potential (P < 0.01); with significant differences between birds receiving the coconut oil- or beef tallow-supplemented diets and the birds feeding on the soy oil- or olive oil-supplemented diets. It was also found that unsaturated fatty acids had a more significant effect on avUCP and avANT mRNA expression. It can be concluded that when using fat in the diet of heat stressed-broilers, it is advisable to choose a type, which has a lower effect on the expression of avUCP and avANT, and hence reduces the metabolic heat load in the bird.


Assuntos
Metabolismo Energético , Ácidos Graxos/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Galinhas , Suplementos Nutricionais , Ácidos Graxos/administração & dosagem , Masculino
20.
J Basic Clin Physiol Pharmacol ; 30(1): 91-101, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30205645

RESUMO

Background Proline is a proteinogenic amino acid with multiple biological functions. Several investigations have been supposed that cellular proline accumulation is a stress response mechanism. This amino acid acts as an osmoregulator, scavenges free radical species, boosts cellular antioxidant defense mechanisms, protects mitochondria, and promotes energy production. The current study was designed to investigate the effect of proline treatment on the liver in bile duct ligated (BDL) rats as an animal model of cholestasis/cirrhosis. Methods BDL rats were supplemented with proline-containing drinking water (0.25% and 0.5% w:v), and samples were collected at scheduled time intervals (3, 7, 14, 28, and 42 days after BDL surgery). Results Drastic elevation in the serum level of liver injury biomarkers and significant tissue histopathological changes were evident in BDL rats. Markers of oxidative stress were also higher in the liver of BDL animals. It was found that proline supplementation attenuated BDL-induced alteration in serum biomarkers of liver injury, mitigated liver histopathological changes, and alleviated markers of oxidative stress at the early stage of BDL operation (3, 7, and 14 days after BDL surgery). Conclusions The hepatoprotection provided by proline in BDL animals might be associated with its ability to attenuate oxidative stress and its consequences.


Assuntos
Suplementos Nutricionais , Cirrose Hepática Biliar/tratamento farmacológico , Falência Hepática Aguda/prevenção & controle , Prolina/uso terapêutico , Animais , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Ligadura/efeitos adversos , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Prolina/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA