Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 40(12): 111394, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130513

RESUMO

Adaptive behavior is coordinated by neuronal networks that are distributed across multiple brain regions such as in the cortico-basal ganglia-thalamo-cortical (CBGTC) network. Here, we ask how cross-regional interactions within such mesoscale circuits reorganize when an animal learns a new task. We apply multi-fiber photometry to chronically record simultaneous activity in 12 or 48 brain regions of mice trained in a tactile discrimination task. With improving task performance, most regions shift their peak activity from the time of reward-related action to the reward-predicting stimulus. By estimating cross-regional interactions using transfer entropy, we reveal that functional networks encompassing basal ganglia, thalamus, neocortex, and hippocampus grow and stabilize upon learning, especially at stimulus presentation time. The internal globus pallidus, ventromedial thalamus, and several regions in the frontal cortex emerge as salient hub regions. Our results highlight the learning-related dynamic reorganization that brain networks undergo when task-appropriate mesoscale network dynamics are established for goal-oriented behavior.


Assuntos
Gânglios da Base , Imageamento por Ressonância Magnética , Animais , Gânglios da Base/fisiologia , Encéfalo , Globo Pálido , Imageamento por Ressonância Magnética/métodos , Camundongos , Vias Neurais , Tálamo/fisiologia
2.
Nat Commun ; 11(1): 5729, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184269

RESUMO

Vasocative-intestinal-peptide (VIP+) and somatostatin (SST+) interneurons are involved in modulating barrel cortex activity and perception during active whisking. Here we identify a developmental transition point of structural and functional rearrangements onto these interneurons around the start of active sensation at P14. Using in vivo two-photon Ca2+ imaging, we find that before P14, both interneuron types respond stronger to a multi-whisker stimulus, whereas after P14 their responses diverge, with VIP+ cells losing their multi-whisker preference and SST+ neurons enhancing theirs. Additionally, we find that Ca2+ signaling dynamics increase in precision as the cells and network mature. Rabies virus tracings followed by tissue clearing, as well as photostimulation-coupled electrophysiology reveal that SST+ cells receive higher cross-barrel inputs compared to VIP+ neurons at both time points. In addition, whereas prior to P14 both cell types receive direct input from the sensory thalamus, after P14 VIP+ cells show reduced inputs and SST+ cells largely shift to motor-related thalamic nuclei.


Assuntos
Interneurônios/metabolismo , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vibrissas/inervação , Vibrissas/metabolismo , Animais , Cálcio , Eletrofisiologia/métodos , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Microscopia Confocal , Modelos Animais , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/metabolismo , Coelhos , Tálamo/fisiologia , Vibrissas/diagnóstico por imagem , Vibrissas/crescimento & desenvolvimento
3.
Nat Commun ; 10(1): 4812, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645554

RESUMO

Neuronal networks of the mammalian motor cortex (M1) are important for dexterous control of limb joints. Yet it remains unclear how encoding of joint movement in M1 depends on varying environmental contexts. Using calcium imaging we measured neuronal activity in layer 2/3 of the M1 forelimb region while mice grasped regularly or irregularly spaced ladder rungs during locomotion. We found that population coding of forelimb joint movements is sparse and varies according to the flexibility demanded from individual joints in the regular and irregular context, even for equivalent grasping actions across conditions. This context-dependence of M1 encoding emerged during task learning, fostering higher precision of grasping actions, but broke apart upon silencing of projections from secondary motor cortex (M2). These findings suggest that M1 exploits information from M2 to adapt encoding of joint movements to the flexibility demands of distinct familiar contexts, thereby increasing the accuracy of motor output.


Assuntos
Membro Anterior , Força da Mão , Articulações/fisiologia , Locomoção/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Córtex Motor/diagnóstico por imagem , Imagem Óptica , Optogenética , Amplitude de Movimento Articular
4.
Nat Neurosci ; 18(8): 1101-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098757

RESUMO

In the mammalian brain, sensory cortices exhibit plasticity during task learning, but how this alters information transferred between connected cortical areas remains unknown. We found that divergent subpopulations of cortico-cortical neurons in mouse whisker primary somatosensory cortex (S1) undergo functional changes reflecting learned behavior. We chronically imaged activity of S1 neurons projecting to secondary somatosensory (S2) or primary motor (M1) cortex in mice learning a texture discrimination task. Mice adopted an active whisking strategy that enhanced texture-related whisker kinematics, correlating with task performance. M1-projecting neurons reliably encoded basic kinematics features, and an additional subset of touch-related neurons was recruited that persisted past training. The number of S2-projecting touch neurons remained constant, but improved their discrimination of trial types through reorganization while developing activity patterns capable of discriminating the animal's decision. We propose that learning-related changes in S1 enhance sensory representations in a pathway-specific manner, providing downstream areas with task-relevant information for behavior.


Assuntos
Discriminação Psicológica/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais , Comportamento Animal/fisiologia , Fenômenos Biomecânicos/fisiologia , Cálcio , Citometria de Varredura a Laser , Masculino , Camundongos , Camundongos Transgênicos , Imagem Óptica , Desempenho Psicomotor/fisiologia
5.
Exp Neurol ; 242: 18-26, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849822

RESUMO

Two-photon microscopy enables high-resolution in vivo imaging of cellular morphology and activity, in particular of population activity in complex neuronal circuits. While two-photon imaging has been extensively used in a variety of brain regions in different species, in vivo application to the vertebrate spinal cord has lagged behind and only recently became feasible by adapting and refining the experimental preparations. A major experimental challenge for spinal cord imaging is adequate control of tissue movement, which meanwhile can be achieved by various means. One set of studies monitored structural dynamics of neuronal and glial cellular components in living animals using transgenic mice with specific expression of fluorescent proteins. Other studies employed in vivo calcium imaging for functional measurements of sensory-evoked responses in individual neurons of the dorsal horn circuitry, which at present is the only part of rodent spinal cord grey matter accessible for in vivo imaging. In a parallel approach, several research groups have applied two-photon imaging to sensorimotor circuits in the isolated spinal cord (in vitro) to provide complementary information and valuable new perspectives on the function of specific interneuron types in locomotor-related networks. In this review we summarize recent results from these types of high-resolution two-photon imaging studies in the spinal cord and provide experimental perspectives for improving and extending this approach in future applications.


Assuntos
Diagnóstico por Imagem , Rede Nervosa/citologia , Neuroglia/fisiologia , Neurônios/fisiologia , Óptica e Fotônica , Medula Espinal/anatomia & histologia , Animais , Diagnóstico por Imagem/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Dinâmica não Linear
6.
Opt Express ; 17(8): 6421-35, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19365467

RESUMO

Nonlinear microscopy techniques crucially rely on efficient signal detection. Here, we present a ring of large-core optical fibers for epi-collection of fluorescence photons that are not transmitted through the objective and thus normally wasted. Theoretical treatments indicated that such a supplementary fiber-optic light collection system (SUFICS) can provide an up to 4-fold signal gain. In typical in vivo imaging experiments, the fiber-ring channel was brighter than the objective channel down to 800 microm depth, thus providing a gain >2. Moreover, SUFICS reduced noise levels in calcium imaging experiments by about 23%. We recommend SUFICS as a generally applicable, effective add-on to nonlinear microscopes for enhancing fluorescence signals.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Aumento da Imagem/instrumentação , Microscopia de Fluorescência/instrumentação , Espectrometria de Fluorescência/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Dinâmica não Linear , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
7.
Opt Lett ; 29(21): 2521-3, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15584281

RESUMO

We present a miniature, flexible two-photon microscope consisting of a fused coherent optical fiber bundle with 30,000 cores and a gradient-index lens objective. The laser focus of a standard two-photon laser-scanning microscope was scanned over the entrance surface of the fiber bundle, resulting in sequential coupling into individual cores. Fluorescent light was detected through the fiber bundle. Micrometer-sized fluorescent beads and pollen grains were readily resolved. In addition, fluorescently labeled blood vessels were imaged through the fiber bundle in rat brain in vivo.


Assuntos
Endoscópios , Análise de Falha de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Microscopia Confocal/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Tomografia de Coerência Óptica/instrumentação , Animais , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Miniaturização , Neocórtex/citologia , Fibras Ópticas , Imagens de Fantasmas , Pólen/ultraestrutura , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA