Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 28, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245745

RESUMO

BACKGROUND: Attempts to use dietary lysozyme (LYZ) as an alternative to antibiotics in broilers have been successful, but further research is needed for effective use. Here, we compared the differences between LYZ and avilamycin (AVI) feed additives for growth performance, gut health and immunity of broilers. One-day old, one hundred and twenty broiler chicks (Ross 308) were randomly allocated into three groups consisting forty birds in each group. Standard diet without supplementation was applied as the control group (I), while the chicks of the other groups were supplemented with 100 mg of AVI per kg diet (AVI, group II), and 90 mg LYZ per kg diet (LYZ, group III) for five consecutive weeks. RESULTS: Body weight, feed conversion ratio, body weight gain, and European production efficiency factor were markedly (p < 0.05) increased in both AVI and LYZ groups in relation to CON group, but the feed intake and protein efficiency ratio were not affected. Both AVI and LYZ significantly (p < 0.001) upregulated the mRNA expression of ileal interleukin-18 (IL-18), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), interleukin-2 (IL-2), and glutathione peroxidase (GSH-PX) genes compared to CON group. However, IL-2, IL-10, IL-18, and GSH-PX genes were markedly (p < 0.01) upregulated in LYZ compared to the AVI group. LYZ treated group had a significant increase (p < 0.05) in the serological haemagglutination inhibition titers of H5N1 vaccination and a significant decrease (p < 0.0001) in coliform counts compared to control and AVI groups, but all growth parameters were nearly similar between AVI and LYZ groups. The VH and VH/CD were markedly higher in LYZ than AVI and control groups. CONCLUSION: Exogenous dietary lysozyme supplementation by a dose of 90 mg/kg broilers' diet induced better effects on intestinal integrity, fecal bacterial counts, immune response, and growth performance which were comparable to avilamycin. Therefore, dietary lysozyme could safely replace avilamycin in the broiler chickens' diet. However, further experimental studies regarding the use of lysozyme in commercial broilers, both in vitro and in vivo, targeting more communities of intestinal microbiome and explaining more details about its beneficial effects need to be conducted.


Assuntos
Galinhas , Virus da Influenza A Subtipo H5N1 , Oligossacarídeos , Animais , Interleucina-2 , Interleucina-10 , Interleucina-18 , Muramidase , Dieta/veterinária , Suplementos Nutricionais , Peso Corporal , Ração Animal/análise
2.
Poult Sci ; 102(4): 102543, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863122

RESUMO

Avian pathogenic E. coli (APEC), a causative agent of colibacillosis, is associated with high mortality and morbidity which results in severe economic losses to the poultry industry worldwide. APEC can be transmitted to humans through the consumption of contaminated poultry products. The limited effect of the current vaccines and the advent of drug-resistant strains have necessitated the development of alternative therapies. Previously, we identified 2 small molecules (SMs; [quorum sensing inhibitor; QSI-5] and [growth inhibitor; GI-7]) with high efficacy in vitro and in chickens subcutaneously challenged with APEC O78. Here, we optimized the oral challenge dose of APEC O78 in chickens to mimic the infection in the natural settings, evaluated the efficacy of the GI-7, QSI-5, and combination of GI-7 and QSI-5 (GI7+ QSI-5) in chickens orally infected with APEC, and compared their efficacy to sulfadimethoxine (SDM), an antibiotic currently used to treat APEC. Using the optimized dose of each SM in drinking water, GI-7, QSI-5, GI7+ QSI-5, and SDM were evaluated in chickens challenged with the optimized dose of APEC O78 (1 × 109 CFU/chicken; orally; d 2 of age) and grown on built-up floor litter. Reduction in mortality was 90, 80, 80, and 70% in QSI-5, GI-7+QSI-5, GI-7, and SDM treated groups compared to the positive control (PC), respectively. GI-7, QSI-5, GI-7+QSI-5, and SDM reduced the APEC load in the cecum by 2.2, 2.3, 1.6, and 0.6 logs and in the internal organs by 1.3, 1.2, 1.4, and 0.4 logs compared to PC (P < 0.05), respectively. The cumulative pathological lesions scores were 0.51, 0.24, 0.0, 0.53, and 1.53 in GI-7, QSI-5, GI-7+QSI-5, SDM, and PC groups, respectively. Overall, GI-7 and QSI-5 individually have promising effects as a potential antibiotic-independent approach to control APEC infections in chickens.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Humanos , Animais , Escherichia coli , Galinhas , Percepção de Quorum , Inibidores do Crescimento/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sulfadimetoxina/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle
3.
Infect Immun ; 90(10): e0033722, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36135600

RESUMO

Campylobacter jejuni is the most common cause of bacterial foodborne gastroenteritis and holds significant public health importance. The continuing increase of antibiotic-resistant Campylobacter necessitates the development of antibiotic-alternative approaches to control infections in poultry and in humans. Here, we assessed the ability of E. coli Nissle 1917 (EcN; free and chitosan-alginate microencapsulated) to reduce C. jejuni colonization in chickens and measured the effect of EcN on the immune responses, intestinal morphology, and gut microbes of chickens. Our results showed that the supplementation of 3-week-old chickens daily with free EcN in drinking water resulted in a 2.0 log reduction of C. jejuni colonization in the cecum, whereas supplementing EcN orally three times a week, either free or microencapsulated, resulted in 2.0 and 2.5 log reductions of C. jejuni colonization, respectively. Gavaged free and microencapsulated EcN did not have an impact on the evenness or the richness of the cecal microbiota, but it did increase the villous height (VH), crypt depth (CD), and VH:CD ratio in the jejunum and ileum of chickens. Further, the supplementation of EcN (all types) increased C. jejuni-specific and total IgA and IgY antibodies in chicken's serum. Microencapsulated EcN induced the expression of several cytokines and chemokines (1.6 to 4.3-fold), which activate the Th1, Th2, and Th17 pathways. Overall, microencapsulated EcN displayed promising effects as a potential nonantibiotic strategy to control C. jejuni colonization in chickens. Future studies on testing microencapsulated EcN in the feed and water of chickens raised on built-up floor litter would facilitate the development of EcN for industrial applications to control Campylobacter infections in poultry.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Quitosana , Água Potável , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Probióticos , Animais , Humanos , Alginatos/farmacologia , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Ceco/microbiologia , Quimiocinas , Galinhas/microbiologia , Quitosana/farmacologia , Citocinas , Escherichia coli , Imunidade , Imunoglobulina A , Doenças das Aves Domésticas/microbiologia , Probióticos/farmacologia , Probióticos/uso terapêutico
4.
Probiotics Antimicrob Proteins ; 14(6): 1012-1028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34458959

RESUMO

Avian pathogenic E. coli (APEC), an extra-intestinal pathogenic E. coli (ExPEC), causes colibacillosis in poultry and is also a potential foodborne zoonotic pathogen. Currently, APEC infections in poultry are controlled by antibiotic medication; however, the emergence of multi-drug-resistant APEC strains and increased restrictions on the use of antibiotics in food-producing animals necessitate the development of new antibiotic alternative therapies. Here, we tested the anti-APEC activity of multiple commensal and probiotic bacteria in an agar-well diffusion assay and identified Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 producing strong zone of inhibition against APEC. In co-culture assay, L. rhamnosus GG and B. lactis Bb12 completely inhibited the APEC growth by 24 h. Further investigation revealed that antibacterial product(s) in the culture supernatants of L. rhamnosus GG and B. lactis Bb12 were responsible for the anti-APEC activity. The analysis of culture supernatants using LC-MS/MS identified multiple novel bioactive peptides (VQAAQAGDTKPIEV, AFDNTDTSLDSTFKSA, VTDTSGKAGTTKISNV, and AESSDTNLVNAKAA) in addition to the production of lactic acid. The oral administration (108 CFU/chicken) of L. rhamnosus GG significantly (P < 0.001) reduced the colonization (~ 1.6 logs) of APEC in the cecum of chickens. Cecal microbiota analysis revealed that L. rhamnosus GG moderated the APEC-induced alterations of the microbial community in the cecum of chickens. Further, L. rhamnosus GG decreased (P < 0.05) the abundance of phylum Proteobacteria, particularly those belonging to Enterobacteriaceae (Escherichia-Shigella) family. These studies indicate that L. rhamnosus GG is a promising probiotic to control APEC infections in chickens. Further studies are needed to optimize the delivery of L. rhamnosus GG in feed or water and in conditions simulating the field to facilitate its development for commercial applications.


Assuntos
Bifidobacterium animalis , Infecções por Escherichia coli , Lacticaseibacillus rhamnosus , Doenças das Aves Domésticas , Probióticos , Animais , Escherichia coli , Galinhas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Infecções por Escherichia coli/microbiologia , Probióticos/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Aves Domésticas , Peptídeos/farmacologia
5.
Sci Rep ; 8(1): 15329, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333507

RESUMO

Avian pathogenic Escherichia coli (APEC), a most common bacterial pathogen of poultry, causes multiple extra-intestinal diseases in poultry which results in significant economic losses to the poultry industry worldwide. In addition, APEC are a subgroup of extra-intestinal pathogenic E. coli (ExPEC), and APEC contaminated poultry products are a potential source of foodborne ExPEC infections to humans and transfer of antimicrobial resistant genes. The emergence of multi-drug resistant APEC strains and the limited efficacy of vaccines necessitate novel APEC control approaches. Here, we screened a small molecule (SM) library and identified 11 SMs bactericidal to APEC. The identified SMs were effective against multiple APEC serotypes, biofilm embedded APEC, antimicrobials resistant APECs, and other pathogenic E. coli strains. Microscopy revealed that these SMs affect the APEC cell membrane. Exposure of SMs to APEC revealed no resistance. Most SMs showed low toxicity towards chicken and human cells and reduced the intracellular APEC load. Treatment with most SMs extended the wax moth larval survival and reduced the intra-larval APEC load. Our studies could facilitate the development of antimicrobial therapeutics for the effective management of APEC infections in poultry as well as other E. coli related foodborne zoonosis, including APEC related ExPEC infections in humans.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Doenças das Aves Domésticas/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Galinhas/microbiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli/patogenicidade , Escherichia coli/fisiologia , Escherichia coli Extraintestinal Patogênica/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA