Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(6): 1917-1926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621624

RESUMO

BACKGROUND: Data regarding effects of small-quantity-lipid-based nutrient supplements (SQ-LNS) on maternal serum zinc concentrations (SZC) in pregnancy and lactation are limited. OBJECTIVES: The objectives of this study were to evaluate the effect of preconception compared with prenatal zinc supplementation (compared with control) on maternal SZC and hypozincemia during pregnancy and early lactation in women in low-resource settings, and assess associations with birth anthropometry. METHODS: From ∼100 women/arm at each of 3 sites (Guatemala, India, and Pakistan) of the Women First Preconception Maternal Nutrition trial, we compared SZC at 12- and 34-wk gestation (n = 651 and 838, respectively) and 3-mo postpartum (n = 742) in women randomly assigned to daily SQ-LNS containing 15 mg zinc from ≥3 mo before conception (preconception, arm 1), from ∼12 wk gestation through delivery (early pregnancy, arm 2) or not at all (control, arm 3). Birth anthropometry was examined for newborns with ultrasound-determined gestational age. Statistical analyses were performed separately for each time point. RESULTS: At 12-wk gestation and 3-mo postpartum, no statistical differences in mean SZC were observed among arms. At 34-wk, mean SZC for arms 1 and 2 were significantly higher than for arm 3 (50.3, 50.8, 47.8 µg/dL, respectively; P = 0.005). Results were not impacted by correction for inflammation or albumin concentrations. Prevalence of hypozincemia at 12-wk (<56 µg/dL) was 23% in Guatemala, 26% in India, and 65% in Pakistan; at 34 wk (<50 µg/dL), 36% in Guatemala, 48% in India, and 74% in Pakistan; and at 3-mo postpartum (<66 µg/dL) 79% in Guatemala, 91% in India, and 92% in Pakistan. Maternal hypozincemia at 34-wk was associated with lower birth length-for-age Z-scores (all sites P = 0.013, Pakistan P = 0.008) and weight-for-age Z-scores (all sites P = 0.017, Pakistan P = 0.022). CONCLUSIONS: Despite daily zinc supplementation for ≥7 mo, high rates of maternal hypozincemia were observed. The association of hypozincemia with impaired fetal growth suggests widespread zinc deficiency in these settings. This trial is registered at clinicaltrials.gov as #NCT01883193.


Assuntos
Suplementos Nutricionais , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Zinco , Humanos , Feminino , Gravidez , Zinco/administração & dosagem , Zinco/sangue , Adulto , Recém-Nascido , Prevalência , Adulto Jovem , Complicações na Gravidez , Índia , Estado Nutricional , Cuidado Pré-Concepcional
2.
PNAS Nexus ; 2(1): pgac309, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36744021

RESUMO

Rapid changes in the global climate are deepening existing health disparities from resource scarcity and malnutrition. Rising ambient temperatures represent an imminent risk to pregnant women and infants. Both maternal malnutrition and heat stress during pregnancy contribute to poor fetal growth, the leading cause of diminished child development in low-resource settings. However, studies explicitly examining interactions between these two important environmental factors are lacking. We leveraged maternal and neonatal anthropometry data from a randomized controlled trial focused on improving preconception maternal nutrition (Women First Preconception Nutrition trial) conducted in Thatta, Pakistan, where both nutritional deficits and heat stress are prevalent. Multiple linear regression of ambient temperature and neonatal anthropometry at birth (n = 459) showed a negative association between daily maximal temperatures in the first trimester and Z-scores of birth length and head circumference. Placental mRNA-sequencing and protein analysis showed transcriptomic changes in protein translation, ribosomal proteins, and mTORC1 signaling components in term placenta exposed to excessive heat in the first trimester. Targeted metabolomic analysis indicated ambient temperature associated alterations in maternal circulation with decreases in choline concentrations. Notably, negative impacts of heat on birth length were in part mitigated in women randomized to comprehensive maternal nutritional supplementation before pregnancy suggesting potential interactions between heat stress and nutritional status of the mother. Collectively, the findings bridge critical gaps in our current understanding of how maternal nutrition may provide resilience against adverse effects of heat stress in pregnancy.

3.
Front Microbiol ; 13: 823757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979501

RESUMO

Objective: To characterize the changes in gut microbiota during pregnancy and determine the effects of nutritional intervention on gut microbiota in women from sub-Saharan Africa (the Democratic Republic of the Congo, DRC), South Asia (India and Pakistan), and Central America (Guatemala). Methods: Pregnant women in the Women First (WF) Preconception Maternal Nutrition Trial were included in this analysis. Participants were randomized to receive a lipid-based micronutrient supplement either ≥3 months before pregnancy (Arm 1); started the same intervention late in the first trimester (Arm 2); or received no nutrition supplements besides those self-administered or prescribed through local health services (Arm 3). Stool and blood samples were collected during the first and third trimesters. Findings presented here include fecal 16S rRNA gene-based profiling and systemic and intestinal inflammatory biomarkers, including alpha (1)-acid glycoprotein (AGP), C-reactive protein (CRP), fecal myeloperoxidase (MPO), and calprotectin. Results: Stool samples were collected from 640 women (DRC, n = 157; India, n = 102; Guatemala, n = 276; and Pakistan, n = 105). Gut microbial community structure did not differ by intervention arm but changed significantly during pregnancy. Richness, a measure of alpha-diversity, decreased over pregnancy. Community composition (beta-diversity) also showed a significant change from first to third trimester in all four sites. Of the top 10 most abundant genera, unclassified Lachnospiraceae significantly decreased in Guatemala and unclassified Ruminococcaceae significantly decreased in Guatemala and DRC. The change in the overall community structure at the genus level was associated with a decrease in the abundances of certain genera with low heterogeneity among the four sites. Intervention arms were not significantly associated with inflammatory biomarkers at 12 or 34 weeks. AGP significantly decreased from 12 to 34 weeks of pregnancy, whereas CRP, MPO, and calprotectin did not significantly change over time. None of these biomarkers were significantly associated with the gut microbiota diversity. Conclusion: The longitudinal reduction of individual genera (both commensals and potential pathogens) and alpha-diversity among all sites were consistent and suggested that the effect of pregnancy on the maternal microbiota overrides other influencing factors, such as nutrition intervention, geographical location, diet, race, and other demographical variables.

4.
Matern Child Nutr ; 17(4): e13204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036728

RESUMO

Maternal iodine (I) status is critical in embryonic and foetal development. We examined the effect of preconception iodine supplementation on maternal iodine status and on birth outcomes. Non-pregnant women in Guatemala, India and Pakistan (n ~ 100 per arm per site) were randomized ≥ 3 months prior to conception to one of three intervention arms: a multimicronutrient-fortified lipid-based nutrient supplement containing 250-µg I per day started immediately after randomization (Arm 1), the same supplement started at ~12 weeks gestation (Arm 2) and no intervention supplement (Arm 3). Urinary I (µg/L) to creatinine (mg/dl) ratios (I/Cr) were determined at 12 weeks for Arm 1 versus Arm 2 (before supplement started) and 34 weeks for all arms. Generalized linear models were used to assess the relationship of I/Cr with arm and with newborn anthropometry. At 12 weeks gestation, adjusted mean I/Cr (µg/g) for all sites combined was significantly higher for Arm 1 versus Arm 2: (203 [95% CI: 189, 217] vs. 163 [95% CI: 152, 175], p < 0.0001). Overall adjusted prevalence of I/Cr < 150 µg/g was also lower in Arm 1 versus Arm 2: 32% (95% CI: 26%, 38%) versus 43% (95% CI: 37%, 49%) (p = 0.0052). At 34 weeks, adjusted mean I/Cr for Arm 1 (235, 95% CI: 220, 252) and Arm 2 (254, 95% CI: 238, 272) did not differ significantly but were significantly higher than Arm 3 (200, 95% CI: 184, 218) (p < 0.0001). Nominally significant positive associations were observed between I/Cr at 12 weeks and birth length and head circumference z-scores (p = 0.028 and p = 0.005, respectively). These findings support the importance of first trimester iodine status and suggest need for preconception supplementation beyond salt iodization alone.


Assuntos
Iodo , Suplementos Nutricionais , Feminino , Desenvolvimento Fetal , Humanos , Recém-Nascido , Estado Nutricional , Gravidez , Primeiro Trimestre da Gravidez
5.
Nutrients ; 13(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513734

RESUMO

BACKGROUND: Research is limited in evaluating the mechanisms responsible for infant growth in response to different protein-rich foods; Methods: Targeted and untargeted metabolomics analysis were conducted on serum samples collected from an infant controlled-feeding trial that participants consumed a meat- vs. dairy-based complementary diet from 5 to 12 months of age, and followed up at 24 months. RESULTS: Isoleucine, valine, phenylalanine increased and threonine decreased over time among all participants; Although none of the individual essential amino acids had a significant impact on changes in growth Z scores from 5 to 12 months, principal component heavily weighted by BCAAs (leucine, isoleucine, valine) and phenylalanine had a positive association with changes in length-for-age Z score from 5 to 12 months. Concentrations of acylcarnitine-C4, acylcarnitine-C5 and acylcarnitine-C5:1 significantly increased over time with the dietary intervention, but none of the acylcarnitines were associated with infant growth Z scores. Quantitative trimethylamine N-oxide increased in the meat group from 5 to 12 months; Conclusions: Our findings suggest that increasing total protein intake by providing protein-rich complementary foods was associated with increased concentrations of certain essential amino acids and short-chain acyl-carnitines. The sources of protein-rich foods (e.g., meat vs. dairy) did not appear to differentially impact serum metabolites, and comprehensive mechanistic investigations are needed to identify other contributors or mediators of the diet-induced infant growth trajectories.


Assuntos
Laticínios , Dieta , Fenômenos Fisiológicos da Nutrição do Lactente , Carne , Metabolômica , Aminoácidos de Cadeia Ramificada/sangue , Aminoácidos Essenciais/sangue , Carnitina/análogos & derivados , Carnitina/sangue , Seguimentos , Humanos , Lactente , Isoleucina/sangue , Leucina/sangue , Fenilalanina/sangue , Valina/sangue
6.
Curr Dev Nutr ; 4(1): nzz132, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32175519

RESUMO

BACKGROUND: Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. OBJECTIVE: To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing >20 micronutrients and prepregnancy BMI (ppBMI). METHODS: This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (-LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. RESULTS: Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P < 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. CONCLUSIONS: Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.

7.
Nat Commun ; 10(1): 1718, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979869

RESUMO

Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Obesidade/genética , Alelos , Animais , Peso Corporal , Linhagem Celular Tumoral , Cruzamentos Genéticos , Deleção de Genes , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Heterozigoto , Homeostase , Humanos , Leptina/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Obesidade/metabolismo , Fenótipo
8.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661757

RESUMO

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Assuntos
Metabolismo Energético/genética , Melanocortinas/metabolismo , Semaforinas/genética , Adolescente , Adulto , Animais , Peso Corporal , Linhagem Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Variação Genética/genética , Homeostase , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Adulto Jovem , Peixe-Zebra
9.
Nutrients ; 9(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28753958

RESUMO

Iron supplementation may have adverse health effects in infants, probably through manipulation of the gut microbiome. Previous research in low-resource settings have focused primarily on anemic infants. This was a double blind, randomized, controlled trial of home fortification comparing multiple micronutrient powder (MNP) with and without iron. Six-month-old, non- or mildly anemic, predominantly-breastfed Kenyan infants in a rural malaria-endemic area were randomized to consume: (1) MNP containing 12.5 mg iron (MNP+Fe, n = 13); (2) MNP containing no iron (MNP-Fe, n = 13); or (3) Placebo (CONTROL, n = 7), from 6-9 months of age. Fecal microbiota were profiled by high-throughput bacterial 16S rRNA gene sequencing. Markers of inflammation in serum and stool samples were also measured. At baseline, the most abundant phylum was Proteobacteria (37.6% of rRNA sequences). The proteobacterial genus Escherichia was the most abundant genus across all phyla (30.1% of sequences). At the end of the intervention, the relative abundance of Escherichia significantly decreased in MNP-Fe (-16.05 ± 6.9%, p = 0.05) and CONTROL (-19.75 ± 4.5%, p = 0.01), but not in the MNP+Fe group (-6.23 ± 9%, p = 0.41). The second most abundant genus at baseline was Bifidobacterium (17.3%), the relative abundance of which significantly decreased in MNP+Fe (-6.38 ± 2.5%, p = 0.02) and CONTROL (-8.05 ± 1.46%, p = 0.01), but not in MNP-Fe (-4.27 ± 5%, p = 0.4445). Clostridium increased in MNP-Fe only (1.9 ± 0.5%, p = 0.02). No significant differences were observed in inflammation markers, except for IL-8, which decreased in CONTROL. MNP fortification over three months in non- or mildly anemic Kenyan infants can potentially alter the gut microbiome. Consistent with previous research, addition of iron to the MNP may adversely affect the colonization of potential beneficial microbes and attenuate the decrease of potential pathogens.


Assuntos
Anemia Ferropriva/epidemiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/administração & dosagem , Ferro/sangue , Micronutrientes/administração & dosagem , RNA Ribossômico 16S/isolamento & purificação , Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Antropometria , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , Biomarcadores/sangue , Clostridium/efeitos dos fármacos , Clostridium/isolamento & purificação , Método Duplo-Cego , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Lactente , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/epidemiologia , Interleucina-8/sangue , Quênia/epidemiologia , Masculino , Micronutrientes/sangue , Micronutrientes/deficiência , Pós , Proteobactérias/efeitos dos fármacos , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA