RESUMO
OBJECTIVE: To evaluate long-term clinical outcomes among patients treated with laser interstitial thermal therapy (LITT) for predicted recurrent glioblastoma (rGBM). METHODS: Patients with rGBM treated by LITT by a single surgeon (2013-2020) were evaluated for progression-free survival (PFS), overall survival (OS), and OS after LITT. RESULTS: Forty-nine patients (33 men, 16 women; mean [SD] age at diagnosis, 58.7 [12.5] years) were evaluated. Among patients with genetic data, 6 of 34 (18%) had IDH-1 R132 mutations, and 7 of 21 (33%) had MGMT methylation. Patients underwent LITT at a mean (SD) of 23.8 (23.8) months after original diagnosis. Twenty of 49 (40%) had previously undergone stereotactic radiosurgery, 37 (75%) had undergone intensity-modulated radiation therapy, and 49 (100%) had undergone chemotherapy. Patients had undergone a mean of 1.2 (0.7) previous resections before LITT. Mean preoperative enhancing and T2 FLAIR volumes were 13.1 (12.8) cm3 and 35.0 (32.8) cm3, respectively. Intraoperative biopsies confirmed rGBM in 31 patients (63%) and radiation necrosis in 18 patients (37%). Six perioperative complications occurred: 3 (6%) cases of worsening aphasia, 1 (2%) seizure, 1 (2%) epidural hematoma, and 1 (2%) intraparenchymal hemorrhage. For the rGBM group, median PFS was 2.0 (IQR, 4.0) months, median OS was 20.0 (IQR, 29.5) months, and median OS after LITT was 6.0 (IQR, 10.5) months. For the radiation necrosis group, median PFS was 4.0 (IQR, 4.5) months, median OS was 37.0 (IQR, 58.0) months, and median OS after LITT was 8.0 (IQR, 23.5) months. CONCLUSIONS: In a diverse rGBM cohort, LITT was associated with a short duration of posttreatment PFS.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia a Laser , Lesões por Radiação , Cirurgiões , Masculino , Humanos , Feminino , Criança , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Terapia a Laser/efeitos adversos , Recidiva Local de Neoplasia/cirurgia , Neoplasias Encefálicas/cirurgia , Imageamento por Ressonância Magnética/efeitos adversos , Espectroscopia de Ressonância Magnética , Resultado do Tratamento , Lesões por Radiação/cirurgia , Necrose/cirurgia , Lasers , Estudos RetrospectivosRESUMO
Glioblastoma (GBM) is the most common primary brain tumor and carries a grave prognosis. Despite years of research investigating potentially new therapies for GBM, the median survival rate of individuals with this disease has remained fairly stagnant. Delivery of drugs to the tumor site is hampered by various barriers posed by the GBM pathological process and by the complex physiology of the blood-brain and blood-cerebrospinal fluid barriers. These anatomical and physiological barriers serve as a natural protection for the brain and preserve brain homeostasis, but they also have significantly limited the reach of intraparenchymal treatments in patients with GBM. In this article, the authors review the functional capabilities of the physical and physiological barriers that impede chemotherapy for GBM, with a specific focus on the pathological alterations of the blood-brain barrier (BBB) in this disease. They also provide an overview of current and future methods for circumventing these barriers in therapeutic interventions. Although ongoing research has yielded some potential options for future GBM therapies, delivery of chemotherapy medications across the BBB remains elusive and has limited the efficacy of these medications.