Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(24): 5574-5585, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37040257

RESUMO

Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations - upon targeting by antibody functionalization - as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.


Assuntos
Hipertermia Induzida , Nanopartículas , Humanos , Calefação , Hipertermia Induzida/métodos , Fototerapia/métodos , Nanopartículas/química , Campos Magnéticos
2.
Theranostics ; 9(24): 7298-7312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695769

RESUMO

The control of temperature during photothermal therapy is key to preventing unwanted damage in surrounding tissue or post-treatment inflammatory responses. Lack of accurate thermal control is indeed one of the main limitations that hyperthermia techniques present to allow their translation into therapeutic applications. We developed a nanoprobe that allows controlled local heating, combined with in situ nanothermometry. The design of the probe follows a practical rationale that aims at simplifying experimental requirements and exploits exclusively optical wavelengths matching the first and second biological windows in the near-infrared. Methods: Hybrid nanostructures were chemically synthesized, and combine gold nanostars (photothermal agents) with CaF2:Nd3+,Y3+ nanoparticles (luminescent nanothermometers). Both components were simultaneously excited in the near-infrared range, at 808 nm. Following the goal of simplifying the thermal monitoring technique, the luminescent signal was recorded with a portable near-infrared detector. The performance of the probes was tested in 3D tumor spheroids from a human glioblastoma (U87MG) cell line. The location of the beads within the spheroids was determined measuring Nd3+ emission in a commercial Lightsheet microscope, modified in-house to be able to select the required near-infrared wavelengths. The temperature achieved inside the tumor spheroids was deduced from the luminescence of Nd3+, following a protocol that we developed to provide reliable thermal readings. Results: The choice of materials was shown to work as an optically excited hybrid probe. Depending on the illumination parameters, temperature can be controlled in a range between 37 ºC and 100 ºC. The near-infrared emission of nanothermometers also allows microscopic tracking of the hybrid nanostructures, confirming that the probes can penetrate deeper into the spheroid mass. We observed that, application of optical thermometry in biological environments requires often neglected considerations, since the optical signal changes along the optical path. Accordingly, we developed data analysis protocols that guarantee reliable thermal readings. Conclusions: The prepared hybrid probes are internalized in 3D tumor spheroids and can be used to induce cell death through photothermal effects, while simultaneously measuring the local temperature in situ. We show that luminescent thermometry in biomedical applications requires the development of protocols that guarantee accurate readings. Regarding photothermal treatments, we observe a sharp thermal threshold at around 55 ºC (for 10 min treatments) that separates high survival ratio from complete cell death.


Assuntos
Fototerapia/métodos , Termometria/métodos , Linhagem Celular Tumoral , Ouro/química , Temperatura Alta , Humanos , Raios Infravermelhos , Nanoestruturas/química , Fototerapia/instrumentação , Esferoides Celulares/efeitos da radiação , Termometria/instrumentação
3.
Nanoscale ; 9(27): 9467-9480, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28660946

RESUMO

The design of compact nanoprobes for multimodal bioimaging is a current challenge and may have a major impact on diagnostics and therapeutics. Multicomponent gold-iron oxide nanoparticles have shown high potential as contrast agents in numerous imaging techniques due to the complementary features of iron oxide and gold nanomaterials. In this paper we describe novel gold-iron oxide Janus magnetic-plasmonic nanoparticles as versatile nanoprobes for multimodal imaging. The nanoparticles are characterized as contrast agents for different imaging techniques, including X-ray computed tomography (CT), T2-weighted nuclear magnetic resonance imaging (MRI), photoacoustic imaging (PA), dark-field and bright-field optical microscopy, transmission electron microscopy (TEM), and surface enhanced Raman spectroscopy (SERS). We discuss the effect of particle size and morphology on their performance as contrast agents and show the advantage of a Janus configuration. Additionally, the uptake of nanoparticles by cells can be simultaneously visualized in dark- and bright-field optical microscopy, SERS mapping, and electron microscopy. These complementary techniques allow a complete view of cell uptake in an artifact-free manner, with multiplexing capabilities, and with extra information regarding the nanoparticles' fate inside the cells. Altogether, the results obtained with these non-invasive techniques show the high versatility of these nanoparticles, the advantages of a Janus configuration, and their high potential in multipurpose biomedical applications.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Ouro/química , Imagem Multimodal , Nanopartículas/química , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Técnicas Fotoacústicas , Análise Espectral Raman , Tomografia Computadorizada por Raios X
4.
Small ; 10(24): 5054-67, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25123704

RESUMO

The success of nanoparticle-based therapies will depend in part on accurate delivery to target receptors and organs. There is, therefore, considerable potential in nanoparticles which achieve delivery of the right drug(s) using the right route of administration to the right location at the right time, monitoring the process by non-invasive molecular imaging. A challenge is harnessing immunotherapy via activation of Toll-like receptors (TLRs) for the development of vaccines against major infectious diseases and cancer. In immunotherapy, delivery of the vaccine components to lymph nodes (LNs) is essential for effective stimulation of the immune response. Although some promising advances have been made, delivering therapeutics to LNs remains challenging. It is here shown that iron-oxide nanoparticles can be engineered to combine in a single and small (<50 nm) nanocarrier complementary multimodal imaging features with the immunostimulatory activity of polyinosinic-polycytidylic acid (poly (I:C)). Whilst the fluorescence properties of the nanocarrier show effective delivery to endosomes and TLR3 in antigen presenting cells, MRI/SPECT imaging reveals effective delivery to LNs. Importantly, in vitro and in vivo studies show that, using this nanocarrier, the immunostimulatory activity of poly (I:C) is greatly enhanced. These nanocarriers have considerable potential for cancer diagnosis and the development of new targeted and programmable immunotherapies.


Assuntos
Portadores de Fármacos , Compostos Férricos/administração & dosagem , Sistema Imunitário/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Nanopartículas , RNA de Cadeia Dupla/administração & dosagem , Animais , Linhagem Celular , Sistema Imunitário/imunologia , Camundongos , Camundongos Endogâmicos BALB C
5.
J Control Release ; 154(2): 131-7, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21640145

RESUMO

The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 µm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-γ cytokine production from splenocytes and higher IL-1ß at the site of injection.


Assuntos
Adjuvantes Imunológicos/farmacologia , Formação de Anticorpos , Glicolipídeos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Células Cultivadas , Humanos , Imunidade Celular/efeitos dos fármacos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA