Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 9(10): e106570, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329899

RESUMO

Statins, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, are associated with the prevention of atrial fibrillation (AF) by pleiotropic effects. Recent clinical trial studies have demonstrated conflicting results on anti-arrhythmia between lipophilic and hydrophilic statins. However, the underlying mechanisms responsible for anti-arrhythmogenic effects of statins are largely unexplored. In this study, we evaluated the different roles of lipophilic and hydrophilic statins (simvastatin and pravastatin, respectively) in acetylcholine (100 µM)-activated K+ current (IKACh, recorded by nystatin-perforated whole cell patch clamp technique) which are important for AF initiation and maintenance in mouse atrial cardiomyocytes. Our results showed that simvastatin (1-10 µM) inhibited both peak and quasi-steady-state IKACh in a dose-dependent manner. In contrast, pravastatin (10 µM) had no effect on IKACh. Supplementation of substrates for the synthesis of cholesterol (mevalonate, geranylgeranyl pyrophosphate or farnesyl pyrophosphate) did not reverse the effect of simvastatin on IKACh, suggesting a cholesterol-independent effect on IKACh. Furthermore, supplementation of phosphatidylinositol 4,5-bisphosphate, extracellular perfusion of phospholipase C inhibitor or a protein kinase C (PKC) inhibitor had no effect on the inhibitory activity of simvastatin on IKACh. Simvastatin also inhibits adenosine activated IKACh, however, simvastatin does not inhibit IKACh after activated by intracellular loading of GTP gamma S. Importantly, shortening of the action potential duration by acetylcholine was restored by simvastatin but not by pravastatin. Together, these findings demonstrate that lipophilic statins but not hydrophilic statins attenuate IKACh in atrial cardiomyocytes via a mechanism that is independent of cholesterol synthesis or PKC pathway, but may be via the blockade of acetylcholine binding site. Our results may provide important background information for the use of statins in patients with AF.


Assuntos
Acetilcolina/farmacologia , Fibrilação Atrial/prevenção & controle , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Átrios do Coração/citologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Átrios do Coração/fisiopatologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Miócitos Cardíacos/citologia , Pravastatina/química , Pravastatina/farmacologia , Sinvastatina/química , Sinvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA