Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686333

RESUMO

Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.


Assuntos
Ácidos Graxos Ômega-3 , Síndrome do Desconforto Respiratório , Animais , Camundongos , Encéfalo , Cromatografia Líquida , Inflamação , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos Knockout , Receptores do Leucotrieno B4 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Espectrometria de Massas em Tandem
2.
J Virol Methods ; 135(2): 247-53, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16707170

RESUMO

Laser microdissection combined with real-time RT-PCR presents an advanced tool to quantify particular RNA species in defined tissue areas. Dealing with infectious tissue samples increases the need to overcome the risk of infectivity and contamination during laser microdissection. Here, an useful method to control infectivity of frozen brain sections infected with the Borna disease virus (BDV), an enveloped RNA virus, is described. Various pre-treatments were applied prior to laser microdissection and subsequent real-time RT-PCR. Brain sections were incubated with Vennotrade mark Vet 1 super 1% or 70% ethanol for 30, 60 and 90min, followed by quantification of infectious virus and RNA recovery using laser microdissection. Total RNA specific for the BDV nucleoprotein (BDV-N) and the cellular genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), succinate-ubiquinone reductase (SDHA) and hypoxanthine phosphoribosyl-transferase-1 (HPRT) was measured by real-time RT-PCR and compared to BDV-infected control samples. After 30 min incubation with both disinfectants, no infectious virus was isolated, while sufficient cDNA copy numbers were amplified. As tissue morphology was best preserved after ethanol treatment, 30min incubation with 70% ethanol was selected as the method of choice to prevent infectivity of BDV. This procedure represents a suitable pre-treatment option to ensure adequate safety of virus infected central nervous system tissue.


Assuntos
Vírus da Doença de Borna/genética , Encéfalo/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Vírus da Doença de Borna/patogenicidade , Encéfalo/patologia , DNA Complementar/genética , Complexo II de Transporte de Elétrons/genética , Dosagem de Genes , Hipoxantina Fosforribosiltransferase/genética , Microdissecção , Nucleoproteínas/genética , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA