Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12939, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902639

RESUMO

The global prevalence of colistin-resistant Klebsiella pneumoniae (ColRkp) facilitated by chromosomal and plasmid-mediated Ara4N or PEtN-remodeled LPS alterations has steadily increased with increased colistin usage for treating carbapenem-resistant K. pneumoniae (CRkp). Our study demonstrated the rising trend of ColRkp showing extensively and pandrug-resistant characteristics among CRkp, with a prevalence of 28.5%, which was mediated by chromosomal mgrB, pmrB, or phoQ mutations (91.5%), and plasmid-mediated mcr-1.1, mcr-8.1, mcr-8.2 alone or in conjunction with R256G PmrB (8.5%). Several genetic alterations in mgrB (85.1%) with increased expressions of Ara4N-related phoPQ and pmrK were critical for establishing colistin resistance in our isolates. In this study, we discovered the significant associations between extensively drug-resistant bacteria (XDR) and pandrug-resistant bacteria (PDR) ColRkp in terms of moderate, weak or no biofilm-producing abilities, and altered expressions of virulence factors. These ColRkp would therefore be very challenging to treat, emphasizing for innovative therapy to combat these infections. Regardless of the underlying colistin-resistant mechanisms, colistin-EDTA combination therapy in this study produced potent synergistic effects in both in vitro and in vivo murine bacteremia, with no ColRkp regrowth and improved animal survival, implying the significance of colistin-EDTA combination therapy as systemic therapy for unlocking colistin resistance in ColRkp-associated bacteremia.


Assuntos
Bacteriemia , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Farmacorresistência Bacteriana/genética , Ácido Edético/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Camundongos , Testes de Sensibilidade Microbiana , Prevalência
2.
Sci Rep ; 12(1): 11390, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794134

RESUMO

Overcoming colistin-resistant Acinetobacter baumannii (CoR-AB) has become a major concern due to the lack of effective antibiotics. This study aimed to explore the prevalence of CoR-AB clinical isolates in Thailand, their mechanisms of resistance, and test the efficacy of colistin plus sulbactam against CoR-AB isolates. The colistin resistance rate among carbapenem-resistant A. baumannii was 15.14%. The mcr gene or its variants were not detected in CoR-AB isolates by PCR screening. The lipid A mass spectra of CoR-AB isolates showed the additional [M-H]- ion peak at m/z = 2034 that correlated to the phosphoethanolamine (pEtN) addition to lipid A (N = 27/30). The important amino acid substitutions were found at position S14P, A138T, A227V in PmrB that are associated with overexpression of the pEtN transferase (PmrC) and contributed the pEtN addition. The lipopolysacccharide production genes (lpxACD) were not related to lipid A mass spectra. A colistin plus sulbactam combination exhibited the synergy rate at 86.7% against CoR-AB isolates compare to sulbactam (85.89% resistance) or colistin (15.14% resistance) alone. The excellent synergistic activity of colistin plus sulbactam combination has the potential for the treatment of CoR-AB infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Colistina/uso terapêutico , Etanolaminas , Humanos , Lipídeo A/metabolismo , Testes de Sensibilidade Microbiana , Fosfatidiletanolaminas/metabolismo , Sulbactam/farmacologia , Sulbactam/uso terapêutico
3.
Sci Rep ; 11(1): 21676, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737361

RESUMO

Development of an effective therapy to overcome colistin resistance in Klebsiella pneumoniae, a common pathogen causing catheter-related biofilm infections in vascular catheters, has become a serious therapeutic challenge that must be addressed urgently. Although colistin and EDTA have successful roles for eradicating biofilms, no in vitro and in vivo studies have investigated their efficacy in catheter-related biofilm infections of colistin-resistant K. pneumoniae. In this study, colistin resistance was significantly reversed in both planktonic and mature biofilms of colistin-resistant K. pneumoniae by a combination of colistin (0.25-1 µg/ml) with EDTA (12 mg/ml). This novel colistin-EDTA combination was also demonstrated to have potent efficacy in eradicating colistin-resistant K. pneumoniae catheter-related biofilm infections, and eliminating the risk of recurrence in vivo. Furthermore, this study revealed significant therapeutic efficacy of colistin-EDTA combination in reducing bacterial load in internal organs, lowering serum creatinine, and protecting treated mice from mortality. Altered in vivo expression of different virulence genes indicate bacterial adaptive responses to survive in hostile environments under different treatments. According to these data discovered in this study, a novel colistin-EDTA combination provides favorable efficacy and safety for successful eradication of colistin-resistant K. pneumonia catheter-related biofilm infections.


Assuntos
Colistina/uso terapêutico , Ácido Edético/uso terapêutico , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Infecções Relacionadas a Cateter/tratamento farmacológico , Catéteres/microbiologia , Colistina/metabolismo , Combinação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Virulência
4.
Water Res ; 140: 261-267, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723815

RESUMO

The elimination of potentially pathogenic bacteria in wastewater treatment plants (WWTPs) attracts much attention in public health. Reports on the occurrence of the emerging hospital pathogen Acinetobacter baumannii in wastewaters do not include a continuous monitoring at all WWTP stages. The objective of this study was to characterize A. baumannii recovered from the water and sludge line of the secondary WWTP in Zagreb, Croatia over the period of one year. Recovery of A. baumannii was performed using CHROMagar Acinetobacter plates. Antimicrobial susceptibility testing was performed with broth microdilution and results interpreted using EUCAST breakpoints for clinical isolates of A. baumannii. Molecular characterization was performed by WGS and cgMLST. The secondary WWTP treating the urban wastewater is constantly receiving viable A. baumannii along with genes encoding carbapenem resistance, and emitting them via effluent into the environment. Furthermore, A. baumannii from influent are incorporated into activated sludge flocs in aeration basin. A. baumannii can survive the technological process of anaerobic mesophilic sludge digestion, and is finally destroyed in alkaline lime-treated stabilized sludge. The majority (102/119) of A. baumannii isolates were carbapenem-resistant, while antibiotic-susceptible isolates (17/119) were rarely recovered from all WWTP stages. Carbapenem-resistant isolates belonged to international clonal lineage IC2 carrying OXA-23 and IC1 carrying OXA-72, while the susceptible isolates belonged to IC5 or were unclustered. Increased resistance to antibiotics, together with the appearance of carbapenem- and even pandrug-resistant isolates in effluent as compared to influent wastewater, suggests the need of additional disinfection of effluent prior to its discharge into the natural recipient.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Carbapenêmicos/farmacologia , Croácia , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Esgotos/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-28893775

RESUMO

Carbapenem antibiotics are among the mainstays for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States, where carbapenem-resistant A. baumannii remains relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from five health care facilities in the state of Oregon. All isolates were defined as extensively drug resistant. Multilocus sequence typing revealed that the isolates belonged to sequence type 2 (international clone 2 [IC2]) and were >95% similar as determined by repetitive-sequence-based PCR analysis. Multiplex PCR revealed the presence of a blaOXA carbapenemase gene, later identified as blaOXA-237 Whole-genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that blaOXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried on a 15,198-bp plasmid designated pORAB01-3 and was present in all 16 isolates. The plasmid also contained genes encoding a TonB-dependent receptor, septicolysin, a type IV secretory pathway (VirD4 component, TraG/TraD family) ATPase, an integrase, a RepB family plasmid DNA replication initiator protein, an alpha/beta hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak in the northwestern United States associated with this carbapenemase. Particularly worrisome is that blaOXA-237 was carried on a plasmid and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , Infecção Hospitalar/epidemiologia , DNA Bacteriano/genética , Surtos de Doenças , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Reação em Cadeia da Polimerase
6.
J Clin Microbiol ; 55(1): 134-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795336

RESUMO

The widespread dissemination of carbapenem-resistant Acinetobacter spp. has created significant therapeutic challenges. At present, rapid molecular diagnostics (RMDs) that can identify this phenotype are not commercially available. Two RMD platforms, PCR combined with electrospray ionization mass spectrometry (PCR/ESI-MS) and molecular beacons (MB), for detecting genes conferring resistance/susceptibility to carbapenems in Acinetobacter spp. were evaluated. An archived collection of 200 clinical Acinetobacter sp. isolates was tested. Predictive values for susceptibility and resistance were estimated as a function of susceptibility prevalence and were based on the absence or presence of beta-lactamase (bla) NDM, VIM, IMP, KPC, and OXA carbapenemase genes (e.g., blaOXA-23, blaOXA-24/40, and blaOXA-58 found in this study) against the reference standard of MIC determinations. According to the interpretation of MICs, 49% (n = 98) of the isolates were carbapenem resistant (as defined by either resistance or intermediate resistance to imipenem). The susceptibility sensitivities (95% confidence interval [CI]) for imipenem were 82% (74%, 89%) and 92% (85%, 97%) for PCR/ESI-MS and MB, respectively. Resistance sensitivities (95% CI) for imipenem were 95% (88%, 98%) and 88% (80%, 94%) for PCR/ESI-MS and MB, respectively. PRIMERS III establishes that RMDs can discriminate between carbapenem resistance and susceptibility in Acinetobacter spp. In the context of a known prevalence of resistance, SPVs and RPVs can inform clinicians regarding the best choice for empiric antimicrobial therapy against this multidrug-resistant pathogen.


Assuntos
Acinetobacter/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Patologia Molecular/métodos , Resistência beta-Lactâmica , beta-Lactamases/genética , Acinetobacter/efeitos dos fármacos , Acinetobacter/enzimologia , Primers do DNA , Humanos , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA