Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 17(10): 1101-1110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34385683

RESUMO

Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the ß-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available. Here, we present cryo-electron microscopy and X-ray crystallography structures of cyanophycin synthetases from three different bacteria, including cocomplex structures of CphA1 with ATP and cyanophycin polymer analogs at 2.6 Å resolution. These structures reveal two distinct tetrameric architectures, show the configuration of active sites and polymer-binding regions, indicate dynamic conformational changes and afford insight into catalytic mechanism. Accompanying biochemical interrogation of substrate binding sites, catalytic centers and oligomerization interfaces combine with the structures to provide a holistic understanding of cyanophycin biosynthesis.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Peptídeo Sintases/genética , Conformação Proteica
3.
ACS Chem Biol ; 5(2): 177-82, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20052969

RESUMO

Prokaryotic cells normally rely on periplasmic oxidoreductases to promote oxidative protein folding. Here we show that simple diselenides can also facilitate the conversion of dithiols to disulfides in vivo, functionally replacing one such oxidoreductase, DsbA, in the oxidative folding of diverse proteins. Structurally analogous disulfides provide no detectable effect when used at concentrations that gave optimal activity with diselenides, and even at 100- to 1000-fold higher levels they show only partial activity. The low concentrations of diselenides needed to fully negate typical DsbA knockout phenotypes suggest catalysis in vivo, a property that sets these additives apart from other small molecules used in chemical biology. Supplementing growth media with cell-permeable organocatalysts provides a potentially general and operationally simple means of fine-tuning the cellular redox environment.


Assuntos
Dissulfetos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Compostos Organosselênicos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Catálise , Cisteína/química , Cisteína/metabolismo , Cistina/química , Cistina/metabolismo , Dissulfetos/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Compostos Organosselênicos/química , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína
4.
Chembiochem ; 9(10): 1623-31, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18548475

RESUMO

Glutaredoxin (Grx1) from Escherichia coli is a monomeric, 85-amino-acid-long, disulfide-containing redox protein. A Grx1 variant in which the redox-active disulfide was replaced with a selenocysteine (C11U/C14S) was prepared by native chemical ligation from three fragments as a potential mimic of the natural selenoenzyme glutathione peroxidase (Gpx). Selenoglutaredoxin, like the analogous C14S Grx1 variant, shows weak peroxidase activity. The selenol provides a 30-fold advantage over the thiol, but its activity is four orders of magnitude lower than that of bovine Gpx. In contrast, selenoglutaredoxin is an excellent catalyst for thiol-disulfide exchange reactions; it promotes the reduction of beta-hydroxyethyldisulfide by glutathione with a specific activity of 130 units mg(-1). This value is 1.8 times greater than that of C14S Grx1 under identical conditions, and >10(4) greater than the peroxidase activity of either enzyme. Given the facile reduction of the glutathionyl-selenoglutaredoxin adduct by glutathione, oxidation of the selenol by the alkyl hydroperoxide substrate likely limits catalytic turnover and will have to be optimized to create more effective Gpx mimics. These results highlight the challenge of generating Gpx activity in a small, generic protein scaffold, despite the presence of a well-defined glutathione binding site and the intrinsic advantage of selenium over sulfur derivatives.


Assuntos
Glutarredoxinas/metabolismo , Glutationa Peroxidase/metabolismo , Selênio , Sequência de Aminoácidos , Catálise , Dicroísmo Circular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutarredoxinas/química , Cinética , Fragmentos de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenocisteína/metabolismo
5.
J Am Chem Soc ; 125(11): 3206-7, 2003 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-12630863

RESUMO

Citrulline was incorporated via chemical semisynthesis at position 90 in the active site of the AroH chorismate mutase from Bacillus subtilis. The wild-type arginine at this position makes hydrogen-bonding interactions with the ether oxygen of chorismate. Replacement of the positively charged guanidinium group with the isosteric but neutral urea has a dramatic effect on the ability of the enzyme to convert chorismate into prephenate. The Arg90Cit variant exhibits a >104-fold decrease in the catalytic rate constant kcat with a 2.7-fold increase in the Michaelis constant Km. In contrast, its affinity for a conformationally constrained inhibitor molecule that effectively mimics the geometry but not the dissociative character of the transition state is only reduced by a factor of approximately 6. These results show that an active site merely complementary to the reactive conformation of chorismate is insufficient for catalysis of the mutase reaction. Instead, electrostatic stabilization of the polarized transition state by provision of a cationic hydrogen bond donor proximal to the oxygen in the breaking C-O bond is essential for high catalytic efficiency.


Assuntos
Corismato Mutase/química , Corismato Mutase/metabolismo , Alanina/química , Alanina/metabolismo , Substituição de Aminoácidos , Arginina/química , Arginina/metabolismo , Bacillus subtilis/enzimologia , Cátions , Citrulina/química , Citrulina/metabolismo , Estabilidade Enzimática , Escherichia coli/enzimologia , Ligação de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA