Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 96(7): 1186-1207, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29314192

RESUMO

In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.


Assuntos
Corpo Estriado/fisiologia , Dendritos/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Parvalbuminas/biossíntese , Tálamo/fisiologia , Animais , Axônios/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dendritos/metabolismo , Ácido Glutâmico , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Tálamo/metabolismo
2.
J Neurophysiol ; 113(10): 3930-42, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25761950

RESUMO

Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices.


Assuntos
Mapeamento Encefálico , Encéfalo/citologia , Encéfalo/fisiologia , Fluorescência , Neurônios/fisiologia , 4-Aminopiridina/farmacologia , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Vias Auditivas/fisiologia , Cálcio/metabolismo , Galinhas , Estimulação Elétrica , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Neurônios/efeitos dos fármacos , Fotometria , Bloqueadores dos Canais de Potássio/farmacologia , Piridazinas/farmacologia , Compostos de Tetraetilamônio/farmacologia , Transfecção
3.
Cereb Cortex ; 21(8): 1803-17, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21220766

RESUMO

Whether neocortical γ-aminobutyric acid (GABA) cells are composed of a limited number of distinct classes of neuron, or whether they are continuously differentiated with much higher diversity, remains a contentious issue for the field. Most GABA cells of rat frontal cortex have at least 1 of 6 chemical markers (parvalbumin, calretinin, alpha-actinin-2, somatostatin, vasoactive intestinal polypeptide, and cholecystokinin), with each chemical class comprising several distinct neuronal subtypes having specific physiological and morphological characteristics. To better clarify GABAergic neuron diversity, we assessed the colocalization of these 6 chemical markers with corticotropin-releasing factor (CRF), neuropeptide Y (NPY), the substance P receptor (SPR), and nitric oxide synthase (NOS); these 4 additional chemical markers suggested to be expressed diversely or specifically among cortical GABA cells. We further correlated morphological and physiological characteristics of identified some chemical subclasses of inhibitory neurons. Our results reveal expression specificity of CRF, NPY, SPR, and NOS in morphologically and physiologically distinct interneuron classes. These observations support the existence of a limited number of functionally distinct subtypes of GABA cells in the neocortex.


Assuntos
Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ácido gama-Aminobutírico/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/citologia , Interneurônios/classificação , Interneurônios/citologia , Masculino , Neocórtex/citologia , Neurogênese/fisiologia , Fenótipo , Ratos , Ratos Transgênicos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA