Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Alcohol Depend ; 215: 108235, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889450

RESUMO

BACKGROUND: Kratom (Mitragyna speciosa Korth.) has been used in Southeast Asia for hundreds of years to increase energy, for relaxation, and to diminish opioid withdrawal. Kratom use has recently spread to Western countries. Kratom could potentially be used for the treatment of opioid withdrawal and pain, but more insight is needed into its abuse potential. Therefore, we investigated the rewarding properties of the primary kratom alkaloid mitragynine and its active metabolite 7-hydroxymitragynine, and morphine as a reference drug in male and female rats. These compounds have agonist activity at mu-opioid receptors. METHODS: The compounds were tested in an intracranial self-stimulation (ICSS) procedure, which allows for the evaluation of the rewarding/aversive and sedative effects of drugs. Rewarding doses of drugs decrease the brain reward thresholds, and aversive drug doses have the opposite effect. RESULTS: Mitragynine, 7-hydroxymitragynine, and morphine affected the brain reward thresholds. A high dose of 7-hydroxymitragynine (3.2 mg/kg) increased the brain reward thresholds, whereas an intermediate dose of morphine (10 mg/kg) decreased the reward thresholds. 7-Hydroxymitragynine and morphine affected the response latencies. Five mg/kg of morphine increased response latencies. 7-Hydroxymitragynine tended to increase the response latencies, but the post hoc analyses did not reveal a significant effect. There were no sex differences in the effects of mitragynine, 7-hydroxymitragynine, and morphine on the reward thresholds and the response latencies. CONCLUSIONS: These initial findings indicate that mitragynine and 7-hydroxymitragynine are not rewarding in the ICSS procedure. The present results suggest that these kratom alkaloids do not have abuse potential.


Assuntos
Alcaloides de Triptamina e Secologanina/farmacologia , Animais , Feminino , Masculino , Mitragyna/efeitos dos fármacos , Morfina/farmacologia , Entorpecentes/uso terapêutico , Extratos Vegetais/uso terapêutico , Ratos , Receptores Opioides mu/agonistas , Recompensa , Autoestimulação/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/tratamento farmacológico
2.
J Pharmacol Exp Ther ; 348(1): 174-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194527

RESUMO

Atypical dopamine-uptake inhibitors have low abuse potential and may serve as leads for development of cocaine-abuse treatments. Among them, the benztropine (BZT) derivatives, N-butyl (JHW007), N-allyl (AHN2-005), and N-methyl (AHN1-055) analogs of 3α-[bis(4'-fluorophenyl)methoxy]-tropane dose-dependently decreased cocaine self-administration without effects on food-maintained responding. Our study examined selectivity by assessing their effects on self-administration of other drugs. As with cocaine, each BZT analog (1.0-10.0 mg/kg i.p.) dose-dependently decreased maximal self-administration of d-methamphetamine (0.01-0.32 mg/kg/infusion) but was inactive against heroin (1.0-32.0 µg/kg/infusion) and ketamine (0.032-1.0 mg/kg/infusion) self-administration. Further, standard dopamine indirect-agonists [WIN35,428 ((-)-3ß-(4-fluorophenyl)-tropan-2-ß-carboxylic acid methyl ester tartrate), d-amphetamine (0.1-1.0 mg/kg i.p., each)] dose-dependently left-shifted self-administration dose-effect curves for d-methamphetamine, heroin, and ketamine. Noncompetitive NMDA-glutamate receptor/channel antagonists [(+)-MK-801 (0.01-0.1 mg/kg i.p.), memantine (1.0-10.0 mg/kg i.p.)] also left-shifted dose-effect curves for d-methamphetamine and ketamine (but not heroin) self-administration. The µ-agonists [dl-methadone and morphine (1.0-10.0 mg/kg i.p., each)] dose-dependently decreased maximal self-administration of µ-agonists (heroin, remifentanil) but not d-methamphetamine or ketamine self-administration. The µ-agonist-induced decreases were similar to the effects of BZT analogs on stimulant self-administration and effects of food prefeeding on responding maintained by food reinforcement. Radioligand-binding and behavioral studies suggested that inhibition of dopamine transporters and σ receptors were critical for blocking stimulant self-administration by BZT-analogs. Thus, the present results suggest that the effects of BZT analogs on stimulant self-administration are similar to effects of µ-agonists on µ-agonist self-administration and food prefeeding on food-reinforced responding, which implicates behavioral mechanisms for these effects and further supports development of atypical dopamine uptake inhibitors as medications for stimulant abuse.


Assuntos
Comportamento Aditivo/prevenção & controle , Benzotropina/análogos & derivados , Benzotropina/uso terapêutico , Metanfetamina/administração & dosagem , Animais , Comportamento Aditivo/psicologia , Benzotropina/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Metanfetamina/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Autoadministração , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA