Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 130(3): 341-351, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30669010

RESUMO

OBJECTIVE: Patients with mesial temporal lobe epilepsy (mTLE) often exhibit central auditory processing (CAP) dysfunction. Monaural 40-Hz auditory steady-state magnetic responses (ASSRs) were recorded to explore the pathophysiology of mTLE. METHODS: Eighteen left mTLE patients, 11 right mTLE patients and 16 healthy controls (HCs) were examined. Monaural clicks were presented at a rate of 40 Hz. Phase-locking factor (PLF) and power values were analyzed within bilateral Heschl's gyri. RESULTS: Monaural 40-Hz ASSR demonstrated temporal frequency dynamics in both PLF and power data. Symmetrical hemispheric contralaterality was revealed in HCs. However, predominant contralaterality was absent in mTLE patients. Specifically, right mTLE patients exhibited a lack of contralaterality in response to left ear but not right ear stimulation, and vice versa in left mTLE patients. CONCLUSION: This is the first study to use monaural 40-Hz ASSR with unilateral mTLE patients to clarify the relationship between CAP and epileptic focus. CAP dysfunction was characterized by a lack of contralaterality corresponding to epileptic focus. SIGNIFICANCE: Monaural 40-Hz ASSR can provide useful information for localizing epileptic focus in mTLE patients.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Magnetoencefalografia , Lobo Temporal/fisiopatologia , Estimulação Acústica , Adolescente , Adulto , Idoso , Epilepsia do Lobo Temporal/diagnóstico por imagem , Potenciais Evocados Auditivos/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
2.
Epilepsy Behav ; 88: 96-105, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30243112

RESUMO

OBJECTIVE: Our previous study of monaural auditory evoked magnetic fields (AEFs) demonstrated that hippocampal sclerosis significantly modulated auditory processing in patients with mesial temporal lobe epilepsy (mTLE). However, the small sample size (n = 17) and focus on the M100 response were insufficient to elucidate the lateralization of the epileptic focus. Therefore, we increased the number of patients with mTLE (n = 39) to examine whether neural synchronization induced by monaural pure tone stimulation provides useful diagnostic information about epileptic foci in patients with unilateral mTLE. METHODS: Twenty-five patients with left mTLE, 14 patients with right mTLE, and 32 healthy controls (HCs) were recruited. Auditory stimuli of 500-Hz tone burst were monaurally presented to subjects. The AEF data were analyzed with source estimation of M100 responses in bilateral auditory cortices (ACs). Neural synchronization within ACs and between ACs was evaluated with phase-locking factor (PLF) and phase-locking value (PLV), respectively. Linear discriminant analysis was performed for diagnosis and lateralization of epileptic focus. RESULTS: The M100 amplitude revealed that patients with right mTLE exhibited smaller M100 amplitude than patients with left mTLE and HCs. Interestingly, PLF was able to differentiate the groups with mTLE, with decreased PLFs in the alpha band observed in patients with right mTLE compared with those (PLFs) in patients with left mTLE. Right hemispheric predominance was confirmed in both HCs and patients with left mTLE while patients with right mTLE showed a lack of right hemispheric predominance. Functional connectivity between bilateral ACs (PLV) was reduced in both patients with right and left mTLE compared with that of HCs. The accuracy of diagnosis and lateralization was 80%-90%. CONCLUSION: Auditory cortex subnormal function was more pronounced in patients with right mTLE compared with that in patients with left mTLE as well as HCs. Monaural AEFs can be used to reveal the pathophysiology of mTLE. Overall, our results indicate that altered neural synchronization may provide useful information about possible functional deterioration in patients with unilateral mTLE.


Assuntos
Estimulação Acústica , Córtex Auditivo/fisiopatologia , Sincronização Cortical , Epilepsia do Lobo Temporal/fisiopatologia , Potenciais Evocados Auditivos , Adulto , Idoso , Córtex Auditivo/diagnóstico por imagem , Estudos de Casos e Controles , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
3.
Sci Rep ; 7(1): 11400, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900289

RESUMO

Time is a fundamental dimension, but millisecond-level judgments sometimes lead to perceptual illusions. We previously introduced a "time-shrinking illusion" using a psychological paradigm that induces auditory temporal assimilation (ATA). In ATA, the duration of two successive intervals (T1 and T2), marked by three auditory stimuli, can be perceived as equal when they are not. Here, we investigate the spatiotemporal profile of human temporal judgments using magnetoencephalography (MEG). Behavioural results showed typical ATA: participants judged T1 and T2 as equal when T2 - T1 ≤ +80 ms. MEG source-localisation analysis demonstrated that regional activity differences between judgment and no-judgment conditions emerged in the temporoparietal junction (TPJ) during T2. This observation in the TPJ may indicate its involvement in the encoding process when T1 ≠ T2. Activation in the inferior frontal gyrus (IFG) was enhanced irrespective of the stimulus patterns when participants engaged in temporal judgment. Furthermore, just after the final marker, activity in the IFG was enhanced specifically for the time-shrinking pattern. This indicates that activity in the IFG is also related to the illusory perception of time-interval equality. Based on these observations, we propose neural signatures for judgments of temporal equality in the human brain.


Assuntos
Percepção Auditiva , Encéfalo/fisiologia , Estimulação Acústica , Análise de Variância , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos
4.
Neuroimage ; 124(Pt A): 256-266, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26363346

RESUMO

The hippocampus is well known to be involved in memory, as well as in perceptual processing. To date, the electrophysiological process by which unilateral hippocampal lesions, such as hippocampal sclerosis (HS), modulate the auditory processing remains unknown. Auditory-evoked magnetic fields (AEFs) are valuable for evaluating auditory functions, because M100, a major component of AEFs, originates from auditory areas. Therefore, AEFs of mesial temporal lobe epilepsy (mTLE, n=17) with unilateral HS were compared with those of healthy (HC, n=17) and disease controls (n=9), thereby determining whether AEFs were indicative of hippocampal influences on the auditory processing. Monaural tone-burst stimuli were presented for each side, followed by analysis of M100 and a previously less characterized exogenous component (M400: 300-500ms). The frequency of acceptable M100 dipoles was significantly decreased in the HS side. Beam-forming-based source localization analysis also showed decreased activity of the auditory area, which corresponded to the inadequately estimated dipoles. M400 was found to be related to the medial temporal structure on the HS side. Volumetric analysis was also performed, focusing on the auditory-related areas (planum temporale, Heschl's gyrus, and superior temporal gyrus), as well as the hippocampus. M100 amplitudes positively correlated with hippocampal and planum temporale volumes in the HC group, whereas they negatively correlated with Heschl's gyrus volume in the mTLE group. Interestingly, significantly enhanced M400 component was observed in the HS side of the mTLE patients. In addition, the M400 component positively correlated with Heschl's gyrus volume and tended to positively correlate with disease duration. M400 was markedly diminished after hippocampal resection. Although volumetric analysis showed decreased hippocampal volume in the HS side, the planum temporale and Heschl's gyrus, the two major sources of M100, were preserved. These results suggested that HS significantly influenced AEFs. Therefore, we concluded that the hippocampus modulates auditory processing differently under normal conditions and in HS.


Assuntos
Córtex Auditivo/fisiopatologia , Percepção Auditiva/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Estimulação Acústica , Adulto , Idoso , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Potenciais Evocados Auditivos , Feminino , Lateralidade Funcional/fisiologia , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Esclerose , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA