Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Cell Mater ; 41: 592-602, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34027631

RESUMO

Calcium channel blockers (CCBs), which are widely used in the treatment of hypertension, have been shown to influence bone metabolism. However, there is little information on whether CCBs also influence the process of fracture healing. Therefore, the effect of the CCB amlodipine on bone healing was studied in a stable closed fracture model in mice using intramedullary screw fixation. Bone healing was investigated by radiology, biomechanics, histomorphometry and Western blot analysis 2 and 5 weeks after fracture healing. Animals were treated daily (post operatively) per os using a gavage with amlodipine low dose (1 mg/ kg body weight, n = 20), amlodipine high dose (3 mg/kg body weight, n = 20) or vehicle (NaCl) (control, n = 20) serving as a negative control. At 2 and 5 weeks, histomorphometric analysis revealed a significantly larger amount of bone tissue within the callus of amlodipine low-dose- and high-dose-treated animals when compared to controls. This was associated with a smaller amount of cartilaginous and fibrous tissue, indicating an acceleration of fracture healing. Biomechanics showed a slightly, but not significantly, higher bending stiffness in amlodipine low-dose- and high-dose-treated animals. Western blot analysis revealed a significantly increased expression of bone morphogenetic protein (BMP)-2 and vascular endothelial growth factor (VEGF). Moreover, the analysis showed a 5-fold higher expression of osteoprotegerin (OPG) and a 10-fold elevated expression of the receptor activator of NF-κB ligand (RANKL), indicating an increased bone turnover. These findings demonstrated that amlodipine accelerated fracture healing by stimulating bone formation, callus remodelling and osteoclast activity.


Assuntos
Anlodipino/farmacologia , Fraturas do Fêmur/tratamento farmacológico , Fêmur/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/metabolismo , Remodelação Óssea/efeitos dos fármacos , Parafusos Ósseos , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Fraturas do Fêmur/metabolismo , Fêmur/metabolismo , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Calcif Tissue Int ; 85(1): 17-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19533012

RESUMO

Hyperhomocysteinemia (HHCY) has been shown to disturb bone metabolism and to increase the incidence of osteoporosis and osteoporotic fractures. However, there is a complete lack of information on whether these metabolic alterations affect bone repair. The aim of this study was to analyze the impact of HHCY on fracture healing. One group of mice was fed a homocystine-supplemented diet (n = 12), whereas another group received the accordant standard diet for control (n = 13). Four weeks after the stable fixation of a closed femoral fracture, animals were killed to prepare bones for histomorphometric and biomechanical analyses. In addition, blood samples were obtained to evaluate serum concentration of homocysteine (HCY). Quantitative analysis of blood samples revealed severe HHCY as indicated by significantly increased serum concentrations of HCY in animals fed the homocystine-supplemented diet (102.2 +/- 64.5 micromol/l) compared to controls (2.8 +/- 1.5 micromol/l). Biomechanical evaluation of bone repair revealed significantly decreased bending stiffness of the femora of homocystine-fed animals (45.5 +/- 18.2 N/mm) compared with controls (64.6 +/- 15.8 N/mm). Histomorphometric analysis demonstrated a slightly smaller callus diameter in HHCY animals but no significant differences in the tissue composition of the callus. In conclusion, the homocystine-supplemented diet leads to severe HHCY, which is associated with an impaired biomechanical quality of the healing bone.


Assuntos
Fraturas do Fêmur/etiologia , Fêmur/patologia , Consolidação da Fratura , Hiper-Homocisteinemia/complicações , Animais , Densidade Óssea/fisiologia , Modelos Animais de Doenças , Fêmur/metabolismo , Hiper-Homocisteinemia/metabolismo , Camundongos , Camundongos Endogâmicos , Osteoporose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA