RESUMO
Centella asiatica (Apiaceae) is a tropical/subtropical medicinal plant, which contains a variety of triterpenoids, including madecassoside, asiaticoside, madecassic acid, and asiatic acid. In this study, we tested the efficiency of hairy root (HR) induction in C. asiatica from leaf and petiole explants. Leaves and petioles collected from C. asiatica plants were suspended in agro-stock for 30 min and co-cultured with Agrobacterium rhizogenes for 3 days to induce HR formation. The transformation efficiency of leaf and petiole explants was approximately 27% and 12%, respectively. A total of 36 HR lines were identified by PCR-based amplification of rol genes, and eight of these lines were selected for further analysis. Among all eight HR lines, the petiole-derived lines HP4 and HP2 displayed the highest growth index (37.8) and the highest triterpenoids concentration (46.57 mgâg-1), respectively. Although triterpenoid concentration was >2-fold higher in leaves than in petioles of C. asiatica plants, the accumulation of triterpenoids in petiole-derived HR cultures was 1.4-fold higher than that in leaf-derived HR cultures. Additionally, in both leaf- and petiole-derived HR cultures, terpenoid production was higher in HRs than in adventitious roots. These results demonstrate that the triterpenoid content in the explant does not affect the triterpenoid content in the resultant HRs. The HR culture of C. asiatica could be scaled up to enable the mass production of triterpenoids in bioreactors for the pharmaceutical and cosmetic industries.
RESUMO
Plant cell cultures have been exploited to provide stable production and new secondary metabolites for better pharmacological activity. Fractionation of adventitious root cultures of Echinacea purpurea resulted in the isolation of eleven constituents, including three new compounds. The structures of the three new compounds were determined to be an alkylamide (1), a polyacetylene (2) and a lignan (3) on the basis of combined spectroscopic analysis. To discover new types of antiresorptive agents, we screened for new compounds that regulate osteoclast differentiation, and survival. Among three new compounds, echinalkamide (compound 1) had considerably inhibitory effects on RANKL-induced osteoclast differentiation, and on proliferation of osteoclasts and efficiently attenuated osteoclastic bone resorption without toxicity. In addition, echinalamide treatment inhibited the osteoclast-specific gene expression level. Echinalkamide achieved this inhibitory effect by disturbing phosphorylation of MAPK and activation of osteoclast transcription factors c-Fos and NFATc1. Conclusionally, our study investigated that echinalkamide remarkably inhibited osteoclast differentiation and osteoclast specific gene expression through repression of the MAPK-c-Fos-NFATC1 cascade.
Assuntos
Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/prevenção & controle , Echinacea/química , Osteogênese/efeitos dos fármacos , Fitoterapia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Conservadores da Densidade Óssea/isolamento & purificação , Reabsorção Óssea/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Óxido Nítrico/biossíntese , Fosforilação/efeitos dos fármacos , Raízes de Plantas/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7 , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genéticaRESUMO
A vast array of plant-based compounds has enriched red biotechnology to serve the human health and food. A peculiar medicinal plant which was an element of traditional Chinese medicine for centuries as a liver and kidney tonic, for life longevity and hair blackening, is Polygonum multiflorum Thunb. (PM) which is popularly known as "He shou wu" or "Fo-ti" and is rich in chemical components like stilbenes, quinones, and flavonoids which have been used as anti-aging, anti-alopecia, anti-cancer, anti-oxidative, anti-bacterial, anti-hyperlipidemia, anti-atherosclerosis, and immunomodulating and hepatoprotective agents in the modern medicine. The health benefits from PM are attained since long through commercial products such as PM root powder, extract, capsules, tincture, shampoo, and body sprays in the market. Currently, the production of these pharmaceuticals and functional foods possessing stilbenes, quinones, and flavonoids is through cell and organ cultures to meet the commercial demand. However, hepatotoxic effects of PM-based products are the stumbling blocks for its long-term usage. The current review encompasses a comprehensive account of bioactive compounds of PM roots, their biological activities as well as efficacy and toxicity issues of PM ingredients and future perspectives.