Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Drugs ; 76(18): 1737-1757, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27909995

RESUMO

Solithromycin is a novel fluoroketolide developed in both oral and intravenous formulations to address increasing macrolide resistance in pathogens causing community-acquired bacterial pneumonia (CABP). When compared with its macrolide and ketolide predecessors, solithromycin has several structural modifications which increase its ribosomal binding and reduce its propensity to known macrolide resistance mechanisms. Solithromycin, like telithromycin, affects 50S ribosomal subunit formation and function, as well as causing frame-shift errors during translation. However, unlike telithromycin, which binds to two sites on the ribosome, solithromycin has three distinct ribosomal binding sites. Its desosamine sugar interacts at the A2058/A2059 cleft in domain V (as all macrolides do), an extended alkyl-aryl side chain interacts with base pair A752-U2609 in domain II (similar to telithromycin), and a fluorine at C-2 of solithromycin provides additional binding to the ribosome. Studies describing solithromycin activity against Streptococcus pneumoniae have reported that it does not induce erm-mediated resistance because it lacks a cladinose moiety, and that it is less susceptible than other macrolides to mef-mediated efflux due to its increased ribosomal binding and greater intrinsic activity. Solithromycin has demonstrated potent in vitro activity against the most common CABP pathogens, including macrolide-, penicillin-, and fluoroquinolone-resistant isolates of S. pneumoniae, as well as Haemophilus influenzae and atypical bacterial pathogens. Solithromycin displays multi-compartment pharmacokinetics, a large volume of distribution (>500 L), approximately 67% bioavailability when given orally, and serum protein binding of 81%. Its major metabolic pathway appears to follow cytochrome P450 (CYP) 3A4, with metabolites of solithromycin undergoing biliary excretion. Its serum half-life is approximately 6-9 h, which is sufficient for once-daily administration. Pharmacodynamic activity is best described as fAUC0-24/MIC (the ratio of the area under the free drug concentration-time curve from 0 to 24 h to the minimum inhibitory concentration of the isolate). Solithromycin has completed one phase II and two phase III clinical trials in patients with CABP. In the phase II trial, oral solithromycin was compared with oral levofloxacin and demonstrated similar clinical success rates in the intention-to-treat (ITT) population (84.6 vs 86.6%). Clinical success in the clinically evaluable patients group was 83.6% of patients receiving solithromycin compared with 93.1% for patients receiving levofloxacin. In SOLITAIRE-ORAL, a phase III trial which assessed patients receiving oral solithromycin or oral moxifloxacin for CABP, an equivalent (non-inferior) early clinical response in the ITT population was demonstrated for patients receiving either solithromycin (78.2%) or moxifloxacin (77.9%). In a separate phase III trial, SOLITAIRE-IV, patients receiving intravenous-to-oral solithromycin (79.3%) demonstrated non-inferiority as the primary outcome of early clinical response in the ITT population compared with patients receiving intravenous-to-oral moxifloxacin (79.7%). Overall, solithromycin has been well tolerated in clinical trials, with gastrointestinal adverse events being most common, occurring in approximately 10% of patients. Transaminase elevation occurred in 5-10% of patients and generally resolved following cessation of therapy. None of the rare serious adverse events that occurred with telithromycin (i.e., hepatotoxicity) have been noted with solithromycin, possibly due to the fact that solithromycin (unlike telithromycin) does not possess a pyridine moiety in its chemical structure, which has been implicated in inhibiting nicotinic acetylcholine receptors. Because solithromycin is a possible substrate and inhibitor of both CYP3A4 and P-glycoprotein (P-gp), it may display drug interactions similar to macrolides such as clarithromycin. Overall, the in vitro activity, clinical efficacy, tolerability, and safety profile of solithromycin demonstrated to date suggest that it continues to be a promising treatment for CABP.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Triazóis/farmacologia , Triazóis/uso terapêutico , Animais , Humanos , Testes de Sensibilidade Microbiana/métodos , Streptococcus pneumoniae/efeitos dos fármacos
2.
Drugs ; 75(3): 253-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25673021

RESUMO

Tedizolid phosphate is a novel oxazolidinone prodrug (converted to the active form tedizolid by phosphatases in vivo) that has been developed and recently approved (June 2014) by the United States FDA for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) caused by susceptible Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Tedizolid is an oxazolidinone, but differs from other oxazolidinones by possessing a modified side chain at the C-5 position of the oxazolidinone nucleus which confers activity against certain linezolid-resistant pathogens and has an optimized C- and D-ring system that improves potency through additional binding site interactions. The mechanism of action of tedizolid is similar to other oxazolidinones and occurs through inhibition of bacterial protein synthesis by binding to 23S ribosomal RNA (rRNA) of the 50S subunit of the ribosome. As with other oxazolidinones, the spontaneous frequency of resistance development to tedizolid is low. Tedizolid is four- to eightfold more potent in vivo than linezolid against all species of staphylococci, enterococci, and streptococci, including drug-resistant phenotypes such as MRSA and vancomycin-resistant enterococci (VRE) and linezolid-resistant phenotypes. Importantly, tedizolid demonstrates activity against linezolid-resistant bacterial strains harboring the horizontally transmissible cfr gene, in the absence of certain ribosomal mutations conferring reduced oxazolidinone susceptibility. With its half-life of approximately 12 h, tedizolid is dosed once daily. It demonstrates linear pharmacokinetics, has a high oral bioavailability of approximately 90 %, and is primarily excreted by the liver as an inactive, non-circulating sulphate conjugate. Tedizolid does not require dosage adjustment in patients with any degree of renal dysfunction or hepatic dysfunction. Studies in animals have demonstrated that the pharmacodynamic parameter most closely associated with the efficacy of tedizolid is fAUC(0-24h)/MIC. In non-neutropenic animals, a dose-response enhancement was observed with tedizolid and lower exposures were required compared to neutropenic cohorts. Two Phase III clinical trials have demonstrated non-inferiority of a once-daily tedizolid 200 mg dose for 6-10 days versus twice-daily 600 mg linezolid for the treatment of ABSSSIs. Both trials used the primary endpoint of early clinical response at 48-72 h; however, one trial compared oral formulations while the other initiated therapy with the parenteral formulation and allowed oral sequential therapy following initial clinical response. Throughout its development, tedizolid has demonstrated that it is well tolerated and animal studies have shown a lower propensity for neuropathies with long-term use than its predecessor linezolid. Data from the two completed Phase III clinical trials demonstrated that the studied tedizolid regimen (200 mg once daily for 6 days) had significantly less impact on hematologic parameters as well as significantly less gastrointestinal treatment-emergent adverse effects (TEAEs) than its comparator linezolid. As with linezolid, tedizolid is a weak, reversible MAO inhibitor; however, a murine head twitch model validated to assess serotonergic activity reported no increase in the number of head twitches with tedizolid even at doses that exceeded the C max in humans by up to 25-fold. Tyramine and pseudoephedrine challenge studies in humans have also reported no meaningful MAO-related interactions with tedizolid. With its enhanced in vitro activity against a broad-spectrum of Gram-positive aerobic bacteria, convenient once-daily dosing, a short 6-day course of therapy, availability of both oral and intravenous routes of administration, and an adverse effect profile that appears to be more favorable than linezolid, tedizolid is an attractive agent for use in both the hospital and community settings. Tedizolid is currently undergoing additional Phase III clinical trials for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilated nosocomial pneumonia (VNP).


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Organofosfatos/uso terapêutico , Oxazóis/uso terapêutico , Dermatopatias Bacterianas/tratamento farmacológico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Ensaios Clínicos como Assunto , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Organofosfatos/administração & dosagem , Organofosfatos/efeitos adversos , Organofosfatos/farmacocinética , Oxazóis/administração & dosagem , Oxazóis/efeitos adversos , Oxazóis/farmacocinética , Dermatopatias Bacterianas/microbiologia
3.
J Chemother ; 27(2): 67-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24548089

RESUMO

The study for monitoring antimicrobial resistance trends (SMART) surveillance program monitors the epidemiology and trends in antibiotic resistance of intra-abdominal pathogens to currently used therapies. The current report describes such trends during 2010-2011. A total of 25,746 Gram-negative clinical isolates from intra-abdominal infections were collected and classified as hospital-associated (HA) if the hospital length of stay (LOS) at the time of specimen collection was ≥48 hours, community-associated (CA) if LOS at the time of specimen collection was <48 hours, or unknown (no designation given by participating centre). A total of 92 different species were collected of which the most common was Escherichia coli: 39% of all isolates in North America to 55% in Africa. Klebsiella pneumoniae was the second most common pathogen: 11% of all isolates from Europe to 19% of all isolates from Asia. Isolates were from multiple intra-abdominal sources of which 32% were peritoneal fluid, 20% were intra-abdominal abscesses, and 16.5% were gall bladder infections. Isolates were further classified as HA (55% of all isolates), CA (39% of all isolates), or unknown (6% of all isolates). The most active antibiotics tested were imipenem, ertapenem, amikacin, and piperacillin-tazobactam. Resistance rates to all other antibiotics tested were high. Considering the current data set and high-level resistance of intra-abdominal pathogens to various antibiotics, further monitoring of the epidemiology of intra-abdominal infections and their susceptibility to antibiotics through SMART is warranted.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Saúde Global , Bactérias Aeróbias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções Intra-Abdominais/tratamento farmacológico , Abscesso Abdominal/tratamento farmacológico , Abscesso Abdominal/epidemiologia , Abscesso Abdominal/microbiologia , Antibacterianos/farmacologia , Líquido Ascítico/microbiologia , Colecistite/tratamento farmacológico , Colecistite/epidemiologia , Colecistite/microbiologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla , Monitoramento Epidemiológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Bactérias Aeróbias Gram-Negativas/crescimento & desenvolvimento , Bactérias Aeróbias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Incidência , Infecções Intra-Abdominais/epidemiologia , Infecções Intra-Abdominais/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/isolamento & purificação , Tempo de Internação , Testes de Sensibilidade Microbiana
4.
Drugs ; 73(2): 159-77, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23371303

RESUMO

Avibactam (formerly NXL104, AVE1330A) is a synthetic non-ß-lactam, ß-lactamase inhibitor that inhibits the activities of Ambler class A and C ß-lactamases and some Ambler class D enzymes. This review summarizes the existing data published for ceftazidime-avibactam, including relevant chemistry, mechanisms of action and resistance, microbiology, pharmacokinetics, pharmacodynamics, and efficacy and safety data from animal and human trials. Although not a ß-lactam, the chemical structure of avibactam closely resembles portions of the cephem bicyclic ring system, and avibactam has been shown to bond covalently to ß-lactamases. Very little is known about the potential for avibactam to select for resistance. The addition of avibactam greatly (4-1024-fold minimum inhibitory concentration [MIC] reduction) improves the activity of ceftazidime versus most species of Enterobacteriaceae depending on the presence or absence of ß-lactamase enzyme(s). Against Pseudomonas aeruginosa, the addition of avibactam also improves the activity of ceftazidime (~fourfold MIC reduction). Limited data suggest that the addition of avibactam does not improve the activity of ceftazidime versus Acinetobacter species or most anaerobic bacteria (exceptions: Bacteroides fragilis, Clostridium perfringens, Prevotella spp. and Porphyromonas spp.). The pharmacokinetics of avibactam follow a two-compartment model and do not appear to be altered by the co-administration of ceftazidime. The maximum plasma drug concentration (C(max)) and area under the plasma concentration-time curve (AUC) of avibactam increase linearly with doses ranging from 50 mg to 2,000 mg. The mean volume of distribution and half-life of 22 L (~0.3 L/kg) and ~2 hours, respectively, are similar to ceftazidime. Like ceftazidime, avibactam is primarily renally excreted, and clearance correlates with creatinine clearance. Pharmacodynamic data suggest that ceftazidime-avibactam is rapidly bactericidal versus ß-lactamase-producing Gram-negative bacilli that are not inhibited by ceftazidime alone.Clinical trials to date have reported that ceftazidime-avibactam is as effective as standard carbapenem therapy in complicated intra-abdominal infection and complicated urinary tract infection, including infection caused by cephalosporin-resistant Gram-negative isolates. The safety and tolerability of ceftazidime-avibactam has been reported in three phase I pharmacokinetic studies and two phase II clinical studies. Ceftazidime-avibactam appears to be well tolerated in healthy subjects and hospitalized patients, with few serious drug-related treatment-emergent adverse events reported to date.In conclusion, avibactam serves to broaden the spectrum of ceftazidime versus ß-lactamase-producing Gram-negative bacilli. The exact roles for ceftazidime-avibactam will be defined by efficacy and safety data from further clinical trials. Potential future roles for ceftazidime-avibactam include the treatment of suspected or documented infections caused by resistant Gram-negative-bacilli producing extended-spectrum ß-lactamase (ESBL), Klebsiella pneumoniae carbapenemases (KPCs) and/or AmpC ß-lactamases. In addition, ceftazidime-avibactam may be used in combination (with metronidazole) for suspected polymicrobial infections. Finally, the increased activity of ceftazidime-avibactam versus P. aeruginosa may be of clinical benefit in patients with suspected or documented P. aeruginosa infections.


Assuntos
Antibacterianos/uso terapêutico , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/uso terapêutico , Inibidores de beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Ceftazidima/química , Ceftazidima/farmacologia , Ensaios Clínicos como Assunto , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana
5.
Microb Drug Resist ; 18(2): 176-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22204595

RESUMO

Changes in the epidemiology of Streptococcus pneumoniae were reported worldwide after the introduction of the 7-valent pneumococcal vaccine, particularly an increase in multi-drug resistant (MDR) 19A strains. Subsequently, a 13-valent pneumococcal vaccine (PCV-13) has been introduced. This study assessed the incidence of S. pneumoniae serotypes in all age groups prior to the introduction of PCV-13 in Canada (2007-2009). Eight hundred S. pneumoniae isolates from respiratory specimens and blood cultures were collected as part of a Canadian surveillance study (CANWARD) from patients in 15 tertiary-care centers. Serotyping was performed by the Quellung method and antimicrobial susceptibility testing was performed by broth microdilution in accordance with the Clinical and Laboratory Standards Institute guidelines. The most common serotypes were 19A (8.6%), 3 (7.3%), 22F (6.0%), 4 (4.6%), 5 (4.4%), and 11A (4.4%); and the first serotype 6D isolate in Canada was identified. Serotypes 5, 7F, and 19A were significantly (p<0.001) more frequently isolated from bloodstream infections. Considerable serotype variability was noted for different age groups: 15B (p<0.01) and 19A (p<0.001) were more frequently isolated from children ≤2 years old. Overall, 46.4% of currently circulating S. pneumoniae serotypes in Canada are included in PCV-13. Notably, 87.5% of MDR-S. pneumoniae were covered by PCV-13. Accordingly, PCV-13 will provide coverage against a significant proportion of circulating S. pneumoniae strains in Canada, including the critical antimicrobial-resistant strains.


Assuntos
Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas/uso terapêutico , Vigilância da População/métodos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Adolescente , Adulto , Idoso , Antibacterianos , Canadá/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Sorotipagem , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/imunologia , Adulto Jovem
6.
Antimicrob Agents Chemother ; 55(7): 3169-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21537027

RESUMO

From January 2007 to December 2009, an annual Canadian national surveillance study (CANWARD) tested 2,943 urinary culture pathogens for antimicrobial susceptibilities according to Clinical and Laboratory Standards Institute guidelines. The most frequently isolated urinary pathogens were as follows (number of isolates, percentage of all isolates): Escherichia coli (1,581, 54%), enterococci (410, 14%), Klebsiella pneumoniae (274, 9%), Proteus mirabilis (122, 4%), Pseudomonas aeruginosa (100, 3%), and Staphylococcus aureus (80, 3%). The rates of susceptibility to trimethoprim-sulfamethoxazole (SXT) were 78, 86, 84, and 93%, respectively, for E. coli, K. pneumoniae, P. mirabilis, and S. aureus. The rates of susceptibility to nitrofurantoin were 96, 97, 33, and 100%, respectively, for E. coli, enterococci, K. pneumoniae, and S. aureus. The rates of susceptibility to ciprofloxacin were 81, 40, 86, 81, 66, and 41%, respectively, for E. coli, enterococci, K. pneumoniae, P. mirabilis, P. aeruginosa, and S. aureus. Statistical analysis of resistance rates (resistant plus intermediate isolates) by year for E. coli over the 3-year study period demonstrated that increased resistance rates occurred only for amoxicillin-clavulanate (from 1.8 to 6.6%; P < 0.001) and for SXT (from 18.6 to 24.3%; P = 0.02). For isolates of E. coli, in a multivariate logistic regression model, hospital location was independently associated with resistance to ciprofloxacin (P = 0.026) with higher rates of resistance observed in inpatient areas (medical, surgical, and intensive care unit wards). Increased age was also associated with resistance to ciprofloxacin (P < 0.001) and with resistance to two or more commonly prescribed oral agents (amoxicillin-clavulanate, ciprofloxacin, nitrofurantoin, and SXT) (P = 0.005). We conclude that frequently prescribed empirical agents for urinary tract infections, such as SXT and ciprofloxacin, demonstrate lowered in vitro susceptibilities when tested against recent clinical isolates.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Urinárias/microbiologia , Adolescente , Adulto , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Canadá , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Ácido Clavulânico/farmacologia , Ácido Clavulânico/uso terapêutico , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Feminino , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/patogenicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Adulto Jovem
7.
Drugs ; 70(7): 859-86, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20426497

RESUMO

Dalbavancin, oritavancin and telavancin are semisynthetic lipoglycopeptides that demonstrate promise for the treatment of patients with infections caused by multi-drug-resistant Gram-positive pathogens. Each of these agents contains a heptapeptide core, common to all glycopeptides, which enables them to inhibit transglycosylation and transpeptidation (cell wall synthesis). Modifications to the heptapeptide core result in different in vitro activities for the three semisynthetic lipoglycopeptides. All three lipoglycopeptides contain lipophilic side chains, which prolong their half-life, help to anchor the agents to the cell membrane and increase their activity against Gram-positive cocci. In addition to inhibiting cell wall synthesis, telavancin and oritavancin are also able to disrupt bacterial membrane integrity and increase membrane permeability; oritavancin also inhibits RNA synthesis. Enterococci exhibiting the VanA phenotype (resistance to both vancomycin and teicoplanin) are resistant to both dalbavancin and telavancin, while oritavancin retains activity. Dalbavancin, oritavancin and telavancin exhibit activity against VanB vancomycin-resistant enterococci. All three lipoglycopeptides demonstrate potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis regardless of their susceptibility to meticillin, as well as Streptococcus spp. Both dalbavancin and telavancin are active against vancomycin-intermediate S. aureus (VISA), but display poor activity versus vancomycin-resistant S. aureus (VRSA). Oritavancin is active against both VISA and VRSA. Telavancin displays greater activity against Clostridium spp. than dalbavancin, oritavancin or vancomycin. The half-life of dalbavancin ranges from 147 to 258 hours, which allows for once-weekly dosing, the half-life of oritavancin of 393 hours may allow for one dose per treatment course, while telavancin requires daily administration. Dalbavancin and telavancin exhibit concentration-dependent activity and AUC/MIC (area under the concentration-time curve to minimum inhibitory concentration ratio) is the pharmacodynamic parameter that best describes their activities. Oritavancin's activity is also considered concentration-dependent in vitro, while in vivo its activity has been described by both concentration and time-dependent models; however, AUC/MIC is the pharmacodynamic parameter that best describes its activity. Clinical trials involving patients with complicated skin and skin structure infections (cSSSIs) have demonstrated that all three agents are as efficacious as comparators. The most common adverse effects reported with dalbavancin use included nausea, diarrhoea and constipation, while injection site reactions, fever and diarrhoea were commonly observed with oritavancin therapy. Patients administered telavancin frequently reported nausea, taste disturbance and insomnia. To date, no drug-drug interactions have been identified for dalbavancin, oritavancin or telavancin. All three of these agents are promising alternatives for the treatment of cSSSIs in cases where more economical options such as vancomycin have been ineffective, in cases of reduced vancomycin susceptibility or resistance, or where vancomycin use has been associated with adverse events.


Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Glicopeptídeos/uso terapêutico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Teicoplanina/análogos & derivados , Aminoglicosídeos/efeitos adversos , Aminoglicosídeos/química , Aminoglicosídeos/farmacocinética , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Antibacterianos/farmacocinética , Ensaios Clínicos como Assunto , Interações Medicamentosas , Glicopeptídeos/efeitos adversos , Glicopeptídeos/química , Glicopeptídeos/farmacocinética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Lipoglicopeptídeos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Teicoplanina/efeitos adversos , Teicoplanina/química , Teicoplanina/farmacocinética , Teicoplanina/uso terapêutico , Resultado do Tratamento
8.
Int J Antimicrob Agents ; 34(1): 82-5, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19342204

RESUMO

This study evaluated the prevalence of fluoroquinolone usage and investigated the association between usage and resistance in respiratory isolates of Streptococcus pneumoniae in Canada. Fluoroquinolone susceptibility testing was conducted on S. pneumoniae collected from 25 medical centres across Canada over nine study years. Fluoroquinolone prescriptions and consumption figures were derived from data in the IMS Health, Canada CompuScript Audit. Between 1997 and 2006, 11825 S. pneumoniae isolates were collected. Ciprofloxacin resistance rates increased significantly (P<0.01) during the study from 0% to 4.5% in children (0-15 years), from 0.2% to 5.4% in adults (16-64 years) and from 1.4% to 11.6% in the elderly (> or = 65 years). Outpatient ciprofloxacin and respiratory fluoroquinolone prescriptions increased by 55.6% (38.2 prescriptions/1000 population to 59.4 prescriptions/1000 population; P<0.01) and 416.2% (5.3 prescriptions/1000 to 27.4 prescriptions/1000; P<0.01), respectively. Ciprofloxacin and respiratory fluoroquinolone consumption increased by 10.6% [1.1 defined daily doses (DDDs)/1000/day to 1.2 DDDs/1000/day; P=0.02] and 38.2% (0.5 to 0.7 DDDs/1000/day; P=0.02), respectively, from 2001 to 2006. A strong association between ciprofloxacin use and resistance (R(2)=0.89) was identified. Fluoroquinolone resistance in S. pneumoniae increased significantly in Canada from 1997 to 2006 in conjunction with increased ciprofloxacin and respiratory fluoroquinolone consumption. Ciprofloxacin usage appears to be the biggest driver of resistance; however, total fluoroquinolone usage is also important.


Assuntos
Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Uso de Medicamentos/tendências , Fluoroquinolonas/uso terapêutico , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Canadá , Criança , Pré-Escolar , Feminino , Fluoroquinolonas/farmacologia , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Streptococcus pneumoniae/isolamento & purificação , Adulto Jovem
9.
Expert Rev Anti Infect Ther ; 4(6): 973-80, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17181414

RESUMO

Laboratory surveillance data suggest that macrolide resistance among Streptococcus pneumoniae has increased dramatically over the past 15 years. This review examines the specifics of macrolide resistance and the clinical relevance of in vitro susceptibility testing in light of the pharmacokinetics and pharmacodynamics of azithromycin and clarithromycin. These drugs concentrate extensively within respiratory tissue and have other positive characteristics not reflected by in vitro susceptibility testing. In general, clarithromycin is the most potent macrolide and the one most likely to maintain clinical efficacy against the low-level resistance associated with most macrolide-resistant pneumococci in the USA. These findings suggest that susceptibility data may underestimate clinical utility and that clarithromycin still has a place in the empiric treatment of respiratory infections.


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Claritromicina/uso terapêutico , Infecções Respiratórias/tratamento farmacológico , Antibacterianos/farmacologia , Azitromicina/farmacologia , Claritromicina/farmacologia , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana , Humanos , Cetolídeos/farmacologia , Cetolídeos/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções Respiratórias/microbiologia , Fatores de Risco , Streptococcus pneumoniae/efeitos dos fármacos
10.
Antimicrob Agents Chemother ; 50(6): 2251-4, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16723598

RESUMO

Ciprofloxacin-resistant Escherichia coli isolates (n = 1,858) from outpatient midstream urine specimens at 40 North American clinical laboratories in 2004 to 2005 were frequently resistant to ampicillin (79.8% of isolates) and trimethoprim-sulfamethoxazole (66.5%); concurrent resistance to cefdinir (9.0%) or nitrofurantoin (4.0%) was less common. Only 10.8% of isolates were resistant to ciprofloxacin alone. Fluoroquinolone-resistant isolates of E. coli from urine were frequently multidrug resistant.


Assuntos
Anti-Infecciosos Urinários/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Adolescente , Adulto , Ampicilina/uso terapêutico , Cefdinir , Cefalosporinas/uso terapêutico , Ciprofloxacina/uso terapêutico , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Nitrofurantoína/uso terapêutico , América do Norte , Pacientes Ambulatoriais , Combinação Trimetoprima e Sulfametoxazol , Infecções Urinárias/microbiologia
11.
Curr Allergy Asthma Rep ; 6(2): 171-81, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16566868

RESUMO

Antimicrobial resistance is a growing problem among upper respiratory tract pathogens. Resistance to beta-lactam drugs among Streptococcus pneumoniae, Haemophilus influenzae, and Streptococcus pyogenes is increasing. As safe and well-tolerated antibiotics, macrolides play a key role in the treatment of community-acquired upper respiratory tract infections (RTIs). Their broad spectrum of activity against gram-positive cocci, such as S. pneumoniae and S. pyogenes, atypical pathogens, H. influenzae (azithromycin and clarithromycin), and Moraxella catarrhalis, has led to the widespread use of macrolides for empiric treatment of upper RTIs and as alternatives for patients allergic to beta-lactams. Macrolide resistance is increasing among pneumococci and recently among S. pyogenes, and is associated with increasing use of the newer macrolides, such as azithromycin. Ribosomal target modification mediated by erm(A) and erm(B) genes and active efflux due to mef(A) and mef(E) are the principal mechanisms of resistance in both S. pneumoniae and S. pyogenes. Recently, ribosomal protein and RNA mutations have been found to be responsible for acquired resistance to macrolides in S. pneumoniae, S. pyogenes, and H. influenzae. Although macrolides are only weakly active against macrolide-resistant streptococci species, producing an efflux pump (mef), and are inactive against pathogens with ribosomal target modification (erm), treatment failures are uncommon. Therefore, macrolide therapy, for now, remains a good alternative for treatment of upper RTIs; however, continuous monitoring of the local resistance patterns is essential.


Assuntos
Antibacterianos/uso terapêutico , Macrolídeos/uso terapêutico , Infecções Respiratórias/tratamento farmacológico , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Humanos , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana
12.
Int J Antimicrob Agents ; 26(5): 380-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16243229

RESUMO

The goal of the North American Urinary Tract Infection Collaborative Alliance (NAUTICA) study was to determine antibiotic susceptibility to commonly used agents for urinary tract infections against outpatient urinary isolates obtained in various geographic regions in the USA and Canada. Forty-one medical centres (30 from the USA and 11 from Canada) participated, with each centre submitting up to 50 consecutive outpatient midstream urine isolates. Isolates were identified to species level by the standard protocol of each laboratory. Susceptibility testing was determined using the National Committee for Clinical Laboratory Standards (NCCLS) microdilution method. Resistance breakpoints used were those published by the NCCLS, including: ampicillin (resistant > or = 32 microg/mL), sulphamethoxazole/trimethoprim (SMX/TMP) (resistant > or = 4 microg/mL), nitrofurantoin (resistant > or = 128 microg/mL), ciprofloxacin (resistant > or = 4 microg/mL) and levofloxacin (resistant > or = 8 microg/mL). Of the 1990 isolates collected, 75.1% (1494) were collected from the USA and 24.9% (496) were collected from Canada. The mean age of the patients was 48.3 years (range 1 month to 99 years), and 79.5% and 20.5% of isolates were obtained from women and men, respectively. The most common organisms were Escherichia coli (57.5%), Klebsiella pneumoniae (12.4%), Enterococcus spp. (6.6%), Proteus mirabilis (5.4%), Pseudomonas aeruginosa (2.9%), Citrobacter spp. (2.7%), Staphylococcus aureus (2.2%), Enterobacter cloacae (1.9%), coagulase-negative staphylococci (1.3%), Staphylococcus saprophyticus (1.2%), Klebsiella spp. (1.2%), Enterobacter aerogenes (1.1%) and Streptococcus agalactiae (1.0%). Among all 1990 isolates, 45.9% were resistant to ampicillin, 20.4% to SMX/TMP, 14.3% to nitrofurantoin, 9.7% to ciprofloxacin and 8.1% to levofloxacin. Fluoroquinolone resistance was highest in patients > or = 65 years of age. For the 1142 E. coli isolates, resistance rates were: ampicillin 37.7%, SMX/TMP 21.3%, ciprofloxacin 5.5%, levofloxacin 5.1% and nitrofurantoin 1.1%. For all 1990 isolates and for the 1142 E. coli only, resistance rates were significantly higher in US compared with Canadian medical centres. This study reports higher rates of antibiotic resistance in US versus Canadian outpatient urinary isolates and demonstrates the continuing evolution of resistance to antimicrobial agents.


Assuntos
Anti-Infecciosos Urinários/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Técnicas In Vitro , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , América do Norte , Infecções Urinárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA