Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ISME J ; 14(3): 676-687, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31767943

RESUMO

Symbiont-mediated nutritional mutualisms can contribute to the host fitness of insects, especially for those that feed exclusively on nutritionally unbalanced diets. Here, we elucidate the importance of B group vitamins in the association of endosymbiotic bacteria Wolbachia with two plant-sap feeding insects, the small brown planthopper, Laodelphax striatellus (Fallén), and the brown planthopper, Nilaparvata lugens (Stål). Infected planthoppers of both species laid more eggs than uninfected planthoppers, while the experimental transfer of Wolbachia into uninfected lines of one planthopper species rescued this fecundity deficit. The genomic analysis showed that Wolbachia strains from the two planthopper species encoded complete biosynthesis operons for biotin and riboflavin, while a metabolic analysis revealed that Wolbachia-infected planthoppers of both species had higher titers of biotin and riboflavin. Furthermore, experimental supplementation of food with a mixture of biotin and riboflavin recovered the fecundity deficit of Wolbachia-uninfected planthoppers. In addition, comparative genomic analysis suggested that the riboflavin synthesis genes are conserved among Wolbachia supergroups. Biotin operons are rare in Wolbachia, and those described share a recent ancestor that may have been horizontally transferred from Cardinium bacteria. Our research demonstrates a type of mutualism that involves a facultative interaction between Wolbachia and plant-sap feeding insects involving vitamin Bs.


Assuntos
Biotina/metabolismo , Hemípteros/microbiologia , Hemípteros/fisiologia , Riboflavina/metabolismo , Wolbachia/metabolismo , Animais , Fertilidade , Genômica , Reprodução , Simbiose , Complexo Vitamínico B/metabolismo , Wolbachia/genética
2.
Aquat Toxicol ; 162: 54-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25781392

RESUMO

Measuring biological responses in resident biota is a commonly used approach to monitoring polluted habitats. The challenge is to choose sensitive and, ideally, stressor-specific endpoints that reflect the responses of the ecosystem. Metabolomics is a potentially useful approach for identifying sensitive and consistent responses since it provides a holistic view to understanding the effects of exposure to chemicals upon the physiological functioning of organisms. In this study, we exposed the aquatic non-biting midge, Chironomus tepperi, to two concentrations of zinc chloride and measured global changes in polar metabolite levels using an untargeted gas chromatography-mass spectrometry (GC-MS) analysis and a targeted liquid chromatography-mass spectrometry (LC-MS) analysis of amine-containing metabolites. These data were correlated with changes in the expression of a number of target genes. Zinc exposure resulted in a reduction in levels of intermediates in carbohydrate metabolism (i.e., glucose 6-phosphate, fructose 6-phosphate and disaccharides) and an increase in a number of TCA cycle intermediates. Zinc exposure also resulted in decreases in concentrations of the amine containing metabolites, lanthionine, methionine and cystathionine, and an increase in metallothionein gene expression. Methionine and cystathionine are intermediates in the transsulfuration pathway which is involved in the conversion of methionine to cysteine. These responses provide an understanding of the pathways affected by zinc toxicity, and how these effects are different to other heavy metals such as cadmium and copper. The use of complementary metabolomics analytical approaches was particularly useful for understanding the effects of zinc exposure and importantly, identified a suite of candidate biomarkers of zinc exposure useful for the development of biomonitoring programs.


Assuntos
Chironomidae/efeitos dos fármacos , Cloretos/toxicidade , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Metabolômica , Poluentes Químicos da Água/toxicidade , Compostos de Zinco/toxicidade , Animais , Biomarcadores/metabolismo , Chironomidae/metabolismo , Cromatografia Líquida , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
3.
Environ Toxicol Chem ; 27(5): 1077-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18419190

RESUMO

High-molecular weight petroleum hydrocarbons (HMWPHs) are a common pollutant in urban freshwater sediments. A previous study found that HMWPHs derived from synthetic oils are detrimental to aquatic benthic macroinvertebrates at concentrations greater than 840 mg/kg, but it is unclear what effect hydrocarbons derived from other sources have on these organisms. A field-based microcosm experiment was conducted to determine whether natural and other types of HMWPHs produce similar effects on indigenous benthic macroinvertebrates as was induced by synthetic motor oils. Ordinations and comparisons of sensitive species indicated that HMWPHs from different anthropogenic sources negatively affected macroinvertebrates, whereas naturally occurring hydrocarbons above the threshold of 840 mg/kg had no detrimental effect. This result suggests that total petroleum hydrocarbon content, which is often used to identify hydrocarbon pollutants, is a good conservative indicator of HMWPH concentrations affecting the biota.


Assuntos
Hidrocarbonetos/toxicidade , Invertebrados/efeitos dos fármacos , Petróleo/toxicidade , Animais , Água Doce , Hidrocarbonetos/química , Invertebrados/classificação , Peso Molecular , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA