Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349353

RESUMO

Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (P = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Proteínas de Plantas/administração & dosagem , Treinamento Resistido , Descanso/fisiologia , Solanum tuberosum/química , Adolescente , Adulto , Extremidades , Feminino , Humanos , Recomendações Nutricionais , Adulto Jovem
2.
Med Sci Sports Exerc ; 50(1): 36-45, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28846563

RESUMO

Although endurance exercise training promotes angiogenesis and improves metabolic health, the effect of resistance training on this process is less well defined. We hypothesized that capillarization would increase proportionally, and concurrently, with muscle fiber hypertrophy in response to resistance training in young men. METHODS: In this double-blind, randomized control trial, 36 men (22 ± 1 yr) were randomized to placebo or protein supplementation, and participated in 12 wk of resistance training. Skeletal muscle biopsies were collected before and after 2, 4, 8, and 12 wk of training. Immunohistochemistry assessed fiber type-specific size and capillarization. Western blot and reverse transcription polymerase chain reaction assessed proteins involved in the molecular regulation of angiogenesis. RESULTS: Resistance training effectively increased Type I (15% ± 4%; P < 0.01) and Type II fiber cross-sectional area (28% ± 5%; P < 0.0001), an effect that tended to be further enhanced with protein supplementation in Type II fibers (P = 0.078). Capillary-to-fiber ratio significantly increased in Type I (P = 0.001) and II (P = 0.015) fibers after 12 wk of resistance exercise training and was evident after only 2 wk. Capillary-to-fiber perimeter exchange index increased in the Type I fibers only (P = 0.054) after 12 wk of training. Training resulted in a reduction in vascular endothelial growth factor mRNA. A (P = 0.008), while vascular endothelial growth factor receptor 2 (P = 0.016), hypoxia-inducible factor 1α (P = 0.016), and endothelial nitric oxide synthase (P = 0.01) increased in both groups. Hypoxia-inducible factor 1α protein content was higher in the protein group (main group effect, P = 0.02), and endothelial nitric oxide synthase content demonstrated a divergent relationship (time-group interaction, P = 0.049). CONCLUSIONS: This study presents novel evidence that microvascular adaptations and the molecular pathways involved are elevated after 2 wk of a 12-wk resistance training program. Increases in muscle fiber cross-sectional area are effectively matched by the changes in the microvasculature, providing further support for resistance training programs to optimize metabolic health.


Assuntos
Capilares/fisiologia , Proteínas Alimentares/administração & dosagem , Hipertrofia , Músculo Esquelético/fisiologia , Neovascularização Fisiológica , Treinamento Resistido , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Fibras Musculares Esqueléticas/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
3.
J Physiol ; 595(13): 4351-4364, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28345766

RESUMO

KEY POINTS: α-linolenic acid (ALA) and exercise training both attenuate hyperlipidaemia-related cardiovascular derangements, however, there is a paucity of information pertaining to their mechanisms of action when combined. We investigated both the independent and combined effects of exercise training and ALA consumption in obese Zucker rats, aiming to determine the potential for additive improvements in cardiovascular function. ALA and exercise training independently improved cardiac output, end-diastolic volume, left ventricular fibrosis and mean blood pressure following a 4 week intervention. Combining ALA and endurance exercise yielded greater improvements in these parameters, independent of changes in markers of oxidative stress or endogenous anti-oxidants. We postulate that divergent mechanisms of action may explain these changes: ALA increases peripheral vasodilation, and exercise training stimulates angiogenesis. ABSTRACT: Although α-linolenic acid (ALA) and endurance exercise training independently attenuate hyperlipidaemia-related cardiovascular derangements, there is a paucity of information pertaining to their mechanisms of action and efficacy when combined as a preventative therapeutic approach. Therefore, we used obese Zucker rats to investigate the independent and combined effects of these interventions on cardiovascular disease. Specifically, animals were randomly assigned to one of the following groups: control diet-sedentary, ALA supplemented-sedentary, control diet-exercise trained or ALA supplemented-exercise trained. Following a 4 week intervention, although the independent and combined effects of ALA and exercise reduced (P < 0.05) the serum free/esterified cholesterol ratio, only the ALA supplemented-exercise trained animals displayed a reduction in the content of both serum free and esterified cholesterol. Moreover, although ALA and endurance training individually increased cardiac output, stroke volume and end-diastolic volume, as well as reduced left ventricle fibrosis, mean blood pressure and total peripheral resistance, these responses were all greater following the combined intervention (ALA supplemented-exercise trained). These effects occurred independent of changes in oxidative phosphorylation proteins, markers of oxidative stress or endogenous anti-oxidant capacity. We propose that the beneficial effects of a combined intervention occur as a result of divergent mechanisms of action elicited by ALA and endurance exercise because only exercise training increased the capillary content in the left ventricle and skeletal muscle, and tended to decrease protein carbonylation in the left ventricle (P = 0.06). Taken together, our data indicate that combining ALA and endurance exercise provides additional improvements in cardiovascular disease risk reduction compared to singular interventions in the obese Zucker rat.


Assuntos
Pressão Sanguínea , Doenças Cardiovasculares/tratamento farmacológico , Diástole , Terapia por Exercício/métodos , Obesidade/complicações , Condicionamento Físico Animal , Ácido alfa-Linolênico/uso terapêutico , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Colesterol/sangue , Frequência Cardíaca , Masculino , Obesidade/fisiopatologia , Ratos , Ratos Zucker , Ácido alfa-Linolênico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA