Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 241: 124964, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31604195

RESUMO

Around former glass factories in south eastern Sweden, there are dozens of dumps whose radioactivity and physico-chemical properties were not investigated previously. Thus, radiometric and physico-chemical characteristics of waste at Madesjö glass dump were studied to evaluate pre-recycling storage requirements and potential radiological and environmental risks. The material was sieved, hand-sorted, leached and scanned with X-Ray Fluorescence (XRF). External dose rates and activity concentrations of Naturally Occurring Radioactive Materials from 238U, 232Th series and 40K were also measured coupled with a radiological risk assessment. Results showed that the waste was 95% glass and dominated by fine fractions (<11.3 mm) at 43.6%. The fine fraction had pH 7.8, 2.6% moisture content, 123 mg kg-1 Total Dissolved Solids, 37.2 mg kg-1 Dissolved Organic Carbon and 10.5 mg kg-1 fluorides. Compared with Swedish EPA guidelines, the elements As, Cd, Pb and Zn were in hazardous concentrations while Pb leached more than the limits for inert and non-hazardous wastes. With 40K activity concentration up to 3000 Bq kg-1, enhanced external dose rates of 40K were established (0.20 µSv h-1) although no radiological risk was found since both External Hazard Index (Hex) and Gamma Index (Iγ) were <1. The glass dump needs remediation and storage of the waste materials under a safe hazardous waste class 'Bank Account' storage cell as a secondary resource for potential future recycling.


Assuntos
Fenômenos Químicos , Vidro/análise , Poluentes Radioativos/análise , Resíduos Radioativos/análise , Resíduos/análise , Resíduos Perigosos , Radioisótopos de Potássio/análise , Reciclagem , Espectrometria por Raios X , Suécia , Tório/análise , Urânio/análise
2.
Environ Sci Technol ; 42(13): 4717-22, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18677996

RESUMO

This study concerns an arctic marine environment that was contaminated by actinide elements after a nuclear accident in 1968, the so-called Thule accident In this study we have analyzed five isolated hot particles as well as sediment samples containing particles from the weapon material for the determination of the nuclear fingerprint of the accident. We report that the fissile material in the hydrogen weapons involved in the Thule accident was a mixture of highly enriched uranium and weapon-grade plutonium and that the main fissile material was 235U (about 4 times more than the mass of 239Pu). In the five hot particles examined, the measured uranium atomic ratio was 235U/238U = 1.02 +/- 0.16 and the Pu-isotopic ratios were as follows: 24Pu/239Pu = 0.0551 +/- 0.0008 (atom ratio), 238Pu/239+240Pu = 0.0161 +/- 0.0005 (activity ratio), 241Pu/239+240Pu = 0.87 +/- 0.12 (activity ratio), and 241Am/ 239+240Pu = 0.169 +/- 0.005 (activity ratio) (reference date 2001-10-01). From the activity ratios of 241Pu/241Am, we estimated the time of production of this weapon material to be from the late 1950s to the early 1960s. The results from reanalyzed bulk sediment samples showed the presence of more than one Pu source involved in the accident, confirming earlier studies. The 238Pu/239+240PU activity ratio and the 240Pu/ 239Pu atomic ratio were divided into at least two Pu-isotopic ratio groups. For both Pu-isotopic ratios, one ratio group had identical ratios as the five hot particles described above and for the other groups the Pu isotopic ratios were lower (238Pu/ 239+240PU activity ratio approximately 0.01 and the 240Pu/P239Pu atomic ratio 0.03). On the studied particles we observed that the U/Pu ratio decreased as a function of the time these particles were present in the sediment. We hypothesis that the decrease in the ratio is due to a preferential leaching of U relative to Pu from the particle matrix.


Assuntos
Amerício/análise , Desastres , Sedimentos Geológicos/análise , Armas Nucleares , Plutônio/análise , Poluentes Radioativos do Solo/análise , Urânio/análise , Groenlândia , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA