Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Europace ; 26(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227822

RESUMO

State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Optogenética , Humanos , Técnicas Eletrofisiológicas Cardíacas/métodos , Optogenética/métodos , Eletrofisiologia Cardíaca/métodos , Coração , Arritmias Cardíacas/terapia
2.
Sci Data ; 9(1): 135, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361792

RESUMO

Optical mapping of animal models is a widely used technique in pre-clinical cardiac research. It has several advantages over other methods, including higher spatial resolution, contactless recording and direct visualisation of action potentials and calcium transients. Optical mapping enables simultaneous study of action potential and calcium transient morphology, conduction dynamics, regional heterogeneity, restitution and arrhythmogenesis. In this dataset, we have optically mapped Langendorff perfused isolated whole hearts (mouse and guinea pig) and superfused isolated atria (mouse). Raw datasets (consisting of over 400 files) can be combined with open-source software for processing and analysis. We have generated a comprehensive post-processed dataset characterising the baseline cardiac electrophysiology in these widely used pre-clinical models. This dataset also provides reference information detailing the effect of heart rate, clinically used anti-arrhythmic drugs, ischaemia-reperfusion and sympathetic nervous stimulation on cardiac electrophysiology. The effects of these interventions can be studied in a global or regional manner, enabling new insights into the prevention and initiation of arrhythmia.


Assuntos
Potenciais de Ação , Cálcio , Técnicas Eletrofisiológicas Cardíacas , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Cálcio/fisiologia , Frequência Cardíaca , Modelos Animais
3.
Mol Brain ; 9: 39, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27080240

RESUMO

BACKGROUND: Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RESULTS: RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while ß-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. CONCLUSION: Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections.


Assuntos
Células Ependimogliais/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/metabolismo , Neuroglia/metabolismo , Magreza/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Contagem de Células , Cromograninas , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos , Camundongos , Nestina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA