Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Med ; 43(5): 2164-2176, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896835

RESUMO

The hypocretin/orexin neuropeptide system coordinates the regulation of various physiological processes. Our previous study reported that a reduction in the expression of pleomorphic adenoma gene­like 1 (Plagl1), which encodes a C2H2 zinc­finger transcription factor, occurs in hypocretin neuron­ablated transgenic mice, suggesting that PLAGL1 is co­expressed in hypocretin neurons and regulates hypocretin transcription. The present study examined whether canonical prepro­hypocretin transcription is functionally modulated by PLAGL1. Double immunostaining indicated that the majority of hypocretin neurons were positive for PLAGL1 immunoreactivity in the nucleus. Notably, PLAGL1 immunoreactivity in hypocretin neurons was altered in response to several conditions affecting hypocretin function. An uneven localization of PLAGL1 was detected in the nuclei of hypocretin neurons following sleep deprivation. Chromatin immunoprecipitation revealed that endogenous PLAGL1 may bind to a putative PLAGL1­binding site in the proximal region of the hypocretin gene, in the murine hypothalamus. In addition, electroporation of the PLAGL1 expression vector into the fetal hypothalamus promoted hypothalamic hypocretin transcription. These results suggested that PLAGL1 may regulate hypothalamic hypocretin transcription.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Orexinas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Embrião de Mamíferos/citologia , Genes Supressores de Tumor , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica
2.
Sleep ; 40(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364459

RESUMO

Study Objectives: Recent findings showed that 16%-26% of narcolepsy patients were positive for anti-tribbles pseudokinase 2 (TRIB2) antibody, and the intracerebroventricular administration of immunoglobulin-G purified from anti-TRIB2 positive narcolepsy patients caused hypocretin/orexin neuron loss. We investigated the pathophysiological role of TRIB2 antibody using TRIB2-immunized rats and hypocretin/ataxin-3 transgenic (ataxin-3) mice. Methods: Plasma, cerebrospinal fluid (CSF), and hypothalamic tissues from TRIB2-immunized rats were collected. Anti-TRIB2 titers, hypocretin contents, mRNA expressions, the cell count of hypocretin neurons, and immunoreactivity of anti-TRIB2 antibodies on hypocretin neurons were investigated. The plasma from ataxin-3 mice was also used to determine the anti-TRIB2 antibody titer changes following the loss of hypocretin neurons. Results: TRIB2 antibody titers increased in the plasma and CSF of TRIB2-immunized rats. The hypothalamic tissue immunostained with the sera from TRIB2-immunized rats revealed positive signals in the cytoplasm of hypcretin neurons. While no changes were found regarding hypothalamic hypocretin contents or cell counts, but there were significant decreases of the hypocretin mRNA level and release into the CSF. The plasma from over 26-week-old ataxin-3 mice, at the advanced stage of hypocretin cell destruction, showed positive reactions against TRIB2 antigen, and positive plasma also reacted with murine hypothalamic hypocretin neurons. Conclusions: Our results suggest that the general activation of the immune system modulates the functions of hypocretin neurons. The absence of a change in hypocretin cell populations suggested that factors other than anti-TRIB2 antibody play a part in the loss of hypocretin neurons in narcolepsy. The increased anti-TRIB2 antibody after the destruction of hypocretin neurons suggest that anti-TRIB2 antibody in narcolepsy patients is the consequence rather than the inciting cause of hypocretin cell destruction.


Assuntos
Autoanticorpos/metabolismo , Autoantígenos/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Narcolepsia/imunologia , Neurônios/imunologia , Orexinas/metabolismo , Animais , Animais Geneticamente Modificados , Ataxina-3/metabolismo , Biomarcadores/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Feminino , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Narcolepsia/metabolismo , Narcolepsia/fisiopatologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Vacinação
3.
Gen Comp Endocrinol ; 247: 183-198, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28174130

RESUMO

Ecdysteroids play an essential role in the regulation of the molting processes of arthropods. Nuclear receptors of the spider Agelena silvatica that showed high homology with other arthropods especially in the functional domains were identified, two isoforms of ecdysone receptor (AsEcRA, AsEcRB), retinoid X receptor (AsRXR) and two isoforms of E75 (AsE75A, AsE75D). AsEcR and AsRXR mRNA did not show major changes in expression but occurred throughout the third instar nymphal stage. AsE75DBD was low or non-existent at first then showed a sudden increase from D7 to D10. On the other hand, AsE75D was expressed in the first half and decreased from D6 to D10. Ecdysteroid titers showed a peak on D6 in A. silvatica third instar nymphs. LC-MS/MS analysis of the ecdysteroid peak revealed only 20-hydroxyecdysone (20E) was present. The 20E peak on D6 and increase in AsE75DBD from D7 is likely a result of ecdysteroids binding to the heterodimer formed with constant expression of the AsEcR and AsRXR receptors. These findings indicate the mechanisms regulating molting widely conserved in insects and other arthropods also similarly function in spiders.


Assuntos
Ecdisteroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Citoplasmáticos e Nucleares/genética , Aranhas/crescimento & desenvolvimento , Aranhas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Muda/genética , Muda/fisiologia , Ninfa/crescimento & desenvolvimento , Filogenia , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Brain Behav Immun ; 57: 58-67, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27318095

RESUMO

Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy.


Assuntos
Hipotálamo/imunologia , Hipotálamo/metabolismo , Inflamação , Lipopolissacarídeos/farmacologia , Orexinas/metabolismo , Sono/imunologia , Vigília , Animais , Ataxina-3/metabolismo , Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos
5.
Biochem Biophys Res Commun ; 403(2): 178-83, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21056546

RESUMO

The hypocretin (also known as orexin) neuropeptide system coordinates the regulation of various physiological processes. A reduction in Nr6a1 expression was observed in hypocretin neuron-ablated transgenic mice. To show that prepro-hypocretin transcription is functionally modulated by NR6A1, we performed chromatin immunoprecipitation (ChIP) analysis, double-immunostaining, a luciferase reporter assay, and an in utero electroporation study. ChIP analysis showed that endogenous NR6A1 binds to a putative NR6A1-binding site. Double-immunostaining indicated almost all hypocretin neurons were positive for NR6A1 immunoreactivity. NR6A1 overexpression in SH-SY5Y cells modulated hypocretin promoter activity, an effect that was countered by lacking a putative NR6A1-binding site. Electroporation with Nr6a1 in the foetal hypothalamus promoted hypocretin transcription as compared to GFP-electroporation. These experiments confirmed that NR6A1 works as a regulator for hypocretin transcription.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuropeptídeos/genética , Membro 1 do Grupo A da Subfamília 6 de Receptores Nucleares/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Análise Mutacional de DNA , Humanos , Hipotálamo/metabolismo , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Orexinas , Regiões Promotoras Genéticas , Deleção de Sequência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA