Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 9(5)2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466098

RESUMO

Axonal regeneration after spinal cord injury (SCI) is difficult to achieve, and no fundamental treatment can be applied in clinical settings. DNA methylation has been suggested to play a role in regeneration capacity and neuronal growth after SCI by controlling the expression of regeneration-associated genes (RAGs). The aim of this study was to examine changes in neuronal DNA methylation status after SCI and to determine whether modulation of DNA methylation with ascorbic acid can enhance neuronal regeneration or functional restoration after SCI. Changes in epigenetic marks (5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC)); the expression of Ten-eleven translocation (Tet) family genes; and the expression of genes related to inflammation, regeneration, and degeneration in the brain motor cortex were determined following SCI. The 5hmC level within the brain was increased after SCI, especially in the acute and subacute stages, and the mRNA levels of Tet gene family members (Tet1, Tet2, and Tet3) were also increased. Administration of ascorbic acid (100 mg/kg) to SCI rats enhanced 5hmC levels; increased the expression of the Tet1, Tet2, and Tet3 genes within the brain motor cortex; promoted axonal sprouting within the lesion cavity of the spinal cord; and enhanced recovery of locomotor function until 12 weeks. In conclusion, we found that epigenetic status in the brain motor cortex is changed after SCI and that epigenetic modulation using ascorbic acid may contribute to functional recovery after SCI.


Assuntos
Ácido Ascórbico/farmacologia , Epigênese Genética/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/patologia , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Contusões , Dioxigenases/genética , Dioxigenases/metabolismo , Feminino , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
2.
Gene ; 692: 88-93, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641213

RESUMO

Proline-arginine-rich (PR)-39 is neutrophil antimicrobial peptide that has potent antimicrobial activity against a broad spectrum of microorganisms, including bacteria, fungi, and some enveloped viruses as a part of the innate immune system. We analyzed the nucleotide sequence variations of PR-39 exon 4, which is the mature peptide region responsible for antimicrobial activity, from 48 pigs of six breeds using sequence-based typing. The analysis identified four alleles including allele PR-35 with a 12-bp deletion near the N-terminus. Interestingly, 16.7% of individuals showed the presence of three alleles per individual, but only in the Berkshire and Duroc breeds. We further analyzed the genetic diversity of PR-39 for the entire genomic region of the gene from PR-39 exon 1 to the 3' untranslated region for different alleles by PCR amplification and cloning. The antimicrobial activity of chemically synthesized PR-35 was similar to that of PR-39, but the level of mammalian cell cytotoxicity was lower than the wild type. Better knowledge of the genetic diversity of PR-39 among different individuals and breeds may contribute to improved immune defense of pigs. PR-35, as a natural antimicrobial peptide variant, could be an interesting candidate for the development of peptide antibiotics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Variações do Número de Cópias de DNA , Animais , Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Éxons , Expressão Gênica , Genoma , Bactérias Gram-Negativas/efeitos dos fármacos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Suínos , Testes de Toxicidade , Catelicidinas
3.
Int J Mol Sci ; 19(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470444

RESUMO

Abstract: Citrons have been widely used for medicinal purposes for a long time, but the application of citron in the food industry is still restricted. The extensive advantages of nanotechnology in the food industry have greatly broadened the application of foods. In this study, by employing nanotechnology, we prepared citron-extract nanoparticle with an average size of 174.11 ± 3.89 nm, containing protein peptide and/or liposome. In order to evaluate the toxicity of nanoparticles and to ensure food safety, biological cytotoxicity at the cell and genomic levels was also identified to examine the toxicity of citron extracts by using an in vitro system. Our results demonstrated that the cytotoxicity of citronliposome was dependent on cell type in high concentrations (1 and 5 mg/mL), selectively against primary human cardiac progenitor cells (hCPCs), and human endothelial progenitor cells (hEPCs) in MTT and lactate dehydrogenase (LDH) assays. Interestingly, for the NIH-3T3 and H9C2 cell lines, cell cytotoxicity was observed with slight genotoxicity, especially from citronpeptide extract for both cell lines. Taken together, our study provides cytotoxicity data on nanoengineered citron extracts according to different cell type as is crucial for further applications.


Assuntos
Citrus/química , Lipossomos/química , Peptídeos/farmacologia , Extratos Vegetais/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Mutagênicos/toxicidade , Nanopartículas
4.
Int J Mol Sci ; 19(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342111

RESUMO

To overcome the drawbacks of conventional drug delivery system, nanoemulsion have been developed as an advanced form for improving the delivery of active ingredients. However, safety evaluation is crucial during the development stage before the commercialization. Therefore, the aim of this study was to evaluate the cytotoxicity of two types of newly developed nanoemulsions. Turmeric extract-loaded nanoemulsion powder-10.6 (TE-NEP-10.6, high content of artificial surfactant Tween 80), which forms the optimal nanoemulsion, and the TE-NEP-8.6 made by increasing the content of natural emulsifier (lecithin) to reduce the potential toxicity of nanoemulsion were cultured with various cells (NIH3T3, H9C2, HepG2, hCPC, and hEPC) and the changes of each cell were observed followed by nanoemulsion treatment. As a result, the two nanoemulsions (TE-NEP-10.6 and TE-NEP-8.6) did not show significant difference in cell viability. In the case of cell line (NIH3T3, H9C2, and HepG2), toxicity was not observed at an experimental concentration of less than 1 mg/mL, however, the cell survival rate decreased in a concentration dependent manner in the case of primary cultured cells. These results from our study can be used as a basic data to confirm the cell type dependent toxicity of nanoemulsion.


Assuntos
Curcuma/química , Emulsões/química , Nanopartículas/química , Óleos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Água/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Humanos
5.
Int J Mol Sci ; 18(6)2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590419

RESUMO

Premature ovarian failure is one of the side effects of chemotherapy in pre-menopausal cancer patients. Preservation of fertility has become increasingly important in improving the quality of life of completely recovered cancer patients. Among the possible strategies for preserving fertility such as ovarian tissue cryopreservation, co-treatment with a pharmacological adjuvant is highly effective and poses less of a burden on the human body. Melatonin is generally produced in various tissues and acts as a universally acting antioxidant in cells. Melatonin is now more widely used in various biological processes including treating insomnia and an adjuvant during chemotherapy. In this review, we summarize the information indicating that melatonin may be useful for reducing and preventing premature ovarian failure in chemotherapy-treated female patients. We also mention that many adjuvants other than melatonin are developed and used to inhibit chemotherapy-induced infertility. This information will give us novel insights on the clinical use of melatonin and other agents as fertoprotective adjuvants for female cancer patients.


Assuntos
Antineoplásicos/efeitos adversos , Preservação da Fertilidade , Melatonina/farmacologia , Neoplasias/complicações , Insuficiência Ovariana Primária/etiologia , Insuficiência Ovariana Primária/prevenção & controle , Substâncias Protetoras/farmacologia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antioxidantes/farmacologia , Feminino , Humanos , Neoplasias/tratamento farmacológico , Insuficiência Ovariana Primária/metabolismo
6.
J Pineal Res ; 63(3)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28658519

RESUMO

Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27Kip1 promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27Kip1 , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients.


Assuntos
Antioxidantes/uso terapêutico , Grelina/uso terapêutico , Melatonina/uso terapêutico , Ovário/efeitos dos fármacos , Insuficiência Ovariana Primária/prevenção & controle , Animais , Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Proteína Forkhead Box O3/metabolismo , Grelina/farmacologia , Humanos , Melatonina/farmacologia , Camundongos Endogâmicos ICR , Ovário/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Receptores de Grelina/metabolismo , Receptores de Melatonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA