Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 96: 153809, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34782203

RESUMO

BACKGROUND: Despite the rising 5-year survival rate of colorectal cancer (CRC) patients, the survival rate decreases as the stage progress, and a low survival rate is highly associated with metastasis. PURPOSE: The purpose of our study is to investigate the effect of dehydroevodiamine (DHE) on the lung metastasis of CRC and the proliferation of CRC cells. STUDY DESIGN: Cell death was confirmed after DHE treatment on several CRC cell lines. The mechanism of cell cytotoxicity was found using flow cytometry. After that, the expression of the proteins or mRNAs related to the cell cytotoxicity was confirmed. Also, anti-metastatic ability of DHE in CRC cells was measured by checking the expression of Epithelial to Mesenchymal Transition (EMT) markers. Lung metastasis mouse model was established, and DHE was administered orally for 14 days. RESULTS: DHE suppressed the viability of HCT116, CT26, SW480, and LoVo cells. DHE treatment led to G2/M arrest via a reduction of cyclin B1/CDK1 and caspase-dependent apoptosis. It also induced autophagy by regulating LC3-II and beclin-1 expression. Additionally, migration and invasion of CRC cells were decreased by DHE through regulation of the expression of EMT markers. Oral administration of DHE could inhibit the lung metastasis of CT26 cells in an in vivo model. CONCLUSION: Our study demonstrated that DHE has a potential therapeutic effect on colorectal cancer metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Alcaloides , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Metástase Neoplásica
2.
Am J Chin Med ; 49(8): 1929-1948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34961413

RESUMO

Although gomisin A (GA) alleviates cancer and inflammation, its anti-obesity effect and the underlying mechanism have not yet been elucidated. Therefore, in this study, we aimed to elucidate the anti-obesity effects of GA by investigating the phenotypic changes involved in the browning and whitening of adipocytes. Here, obesity was induced to C57BL/6J mice using a high-fat diet (HFD). We administrated GA and checked weight changes for 12 weeks. We found that GA decreased the weight of weight gain, epididymal white adipose tissue (eWAT), and liver in the mice. In addition, the administration of GA elevated the levels of high-density lipoprotein (HDL)-cholesterol in the mice serum. Moreover, even after 12 weeks of treatment with GA, it did not cause any hepatic and renal toxicity. However, we found that GA induced the browning of eWAT and inhibited the whitening of brown adipose tissue. We further confirmed the anti-obesity mechanism of GA using 3T3-L1 cells, the human adipose mesenchymal stem cells (hAMSCs), and primary brown adipocytes (BAs) in vitroexperiments. We found that GA suppressed adipogenesis via the activation of AMP-activated protein kinase (AMPK). Furthermore, GA-induced browning by increasing the expression levels of uncoupling protein 1 (UCP1) in hAMSCs. The results of our study indicate that GA can inhibit weight gain by regulating the phenotypic changes involved in the browning and whitening of adipose tissues, which makes it a potential therapeutic agent for the treatment of obesity.


Assuntos
Adipócitos Marrons , Obesidade , Células 3T3-L1 , Tecido Adiposo Marrom , Animais , Ciclo-Octanos , Dieta Hiperlipídica/efeitos adversos , Dioxóis , Lignanas , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico
3.
Am J Chin Med ; 49(6): 1535-1555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34247563

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer death in the world, and metastatic CRC is a major cause of cancer death. Gallotannin (GT), a polyphenolic compound, has shown various biological effects such as anti-oxidant, anti-inflammatory, antimicrobial, and antitumor effects. However, the effects of GT on metastatic CRC cells are not completely understood. This study aimed to investigate the anti-metastatic effect of GT and the underlying mechanisms on metastatic CRC cells. Oral administration of GT suppressed the lung metastasis of metastatic CRC cells in the experimental mouse model. GT decreased the viability of metastatic CRC cell lines, including CT26, HCT116, and SW620, by inducing apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest through inactivation of CDK2/cyclin A complex, and autophagic cell death through up-regulation of LC3B and p62 levels. GT regulated PI3K/AKT/mTOR and AMPK signaling pathways, which are critical for the development and maintenance of cancer. Additionally, non-cytotoxic concentrations of GT can suppress migration and invasion of CRC cells by inhibiting the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and epithelial-mesenchymal transition by downregulating the expression of mesenchymal markers including snail, twist, and vimentin. In conclusion, GT prevented colorectal lung metastasis by reducing survival and inhibiting the metastatic phenotypes of CRC cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Taninos Hidrolisáveis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Taninos Hidrolisáveis/química , Neoplasias Pulmonares/secundário , Camundongos , Estrutura Molecular
4.
Nutrients ; 12(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086629

RESUMO

BACKGROUND: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. METHODS: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. RESULTS: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. CONCLUSION: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.


Assuntos
Tecido Adiposo/patologia , Arctium/química , Caquexia/tratamento farmacológico , Músculo Esquelético/patologia , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Redução de Peso/efeitos dos fármacos , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Atrofia/prevenção & controle , Caquexia/etiologia , Caquexia/genética , Expressão Gênica/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/complicações , Extratos Vegetais/isolamento & purificação , Células Tumorais Cultivadas , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
Molecules ; 25(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349276

RESUMO

Pancreatic cancer (PC) is one of the most severe cancers, and its incidence and mortality rates have steadily increased in the past decade. In this study, we demonstrate the effect of Angelica gigas Nakai extract on pancreatic ductal adenocarcinoma cells. We prepared A. gigas Nakai ethanol extract (AGE) using roots of A. gigas Nakai and detected its active compound decursin from AGE by ultra-performance liquid chromatography analysis. AGE and decursin significantly decreased viability and colony formation of PANC-1 and MIA PaCa-2 cells. AGE and decursin induced G0/G1 phase arrest through downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). Caspase-3-dependent apoptosis of PANC-1 cells was promoted by AGE and decursin. Additionally, nontoxic concentrations of AGE and decursin treatment could suppress matrix metalloproteinase (MMP)-2 and MMP-9 expression and activity by inhibiting p38 phosphorylation. Taken together, this study demonstrates that AGE and decursin have potential properties to be considered in PC treatment.


Assuntos
Angelica/química , Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Butiratos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Apoptose/efeitos dos fármacos , Benzopiranos/química , Butiratos/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosforilação , Extratos Vegetais/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Phytomedicine ; 68: 153147, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32028184

RESUMO

BACKGROUND: Gomisin A (G.A), a lignan compound extracted from the fruits of Schisandra chinensis, is known to exert anti-tumor effects on hepatocarcinoma and colorectal cancer cells. Suppression of proliferation and metastatic abilities of cancer cells are some effective cancer treatment methods. PURPOSE: The objective of this study is to investigate the effects of G.A on metastatic melanoma, and the mechanism by which it affects metastatic melanoma. STUDY DESIGN: The anti-proliferative and anti-metastatic effects of G.A were observed in in vitro and in vivo. METHODS: WST assay and flow cytometry were conducted to investigate the effect of G.A on proliferation, cell cycle arrest, and apoptosis in metastatic melanoma cell lines. Migration and invasion abilities of G.A-treated melanoma cells were observed by wound healing and invasion assays. RESULTS: G.A (25-100 µM) decreased the viability of melanoma cells by inducing cell cycle arrest and apoptosis. These anti-proliferative effects of G.A were found to be mediated by AMPK, ERK, and JNK activation. G.A (5-20 µM) decreased the migration and invasion of melanoma cells by suppressing epithelial-mesenchymal transition (EMT). Consequently, G.A (2-50 mg/kg) inhibited lung metastasis by suppressing EMT and inducing cell cycle arrest and apoptosis in melanoma cells. CONCLUSION: These results conclude that G.A has the potential to reduce metastatic melanoma through its anti-proliferative and anti-metastatic effects.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ciclo-Octanos/farmacologia , Dioxóis/farmacologia , Lignanas/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , MAP Quinase Quinase 4/metabolismo , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Chin J Integr Med ; 26(11): 839-844, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31069694

RESUMO

OBJECTIVE: To study the effect of Liuwei Dihuang Decoction () or Yukmijihwangtang (YJT) on endurance exercise by in vivo experiment. METHODS: ICR mice were randomly divided into the control group (distilled water) and the YJT groups (1, 10, 100 mg/kg), 5 animals per group. YJT and distilled water were orally administered. The anti-fatigue effect of YJT was evaluated by open fifiled test (OFT), forced swimming test (FST), and tail suspension test (TST). RESULTS: In the OFT, YJT signifificantly increased the total movement distance in a dose-dependent manner. Additionally, treatment with YJT signifificantly decreased immobility time in the FST and the TST. Various neurotransmitters such as norepinephrine (NE), serotonin (5-HT), dopamine (DA) levels were increased by FST. Administration of YJT down-regulated the expression levels of NE, 5-HT, 5-hydroxyindole-acetic acid (5-HIAA), and DA in the brain stem and hypothalamus of mice. Moreover, protein expression of HSP70 in mice liver and heart muscles was signifificantly increased in the YJT groups. CONCLUSIONS: YJT could ameliorate fatigue and enhance exercise tolerance through suppressing of brain monoamines including NE, 5-HT, 5-HIAA, and DA in FST mice model.


Assuntos
Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Tolerância ao Exercício/efeitos dos fármacos , Fadiga/tratamento farmacológico , Neurotransmissores/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR
8.
Phytomedicine ; 62: 152952, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31132754

RESUMO

BACKGROUND: Although rubrofusarin-6-ß-gentiobioside (RFG), which is a component of Cassiae tora seed, could likely regulate hyperlipidemia, its anti-obesity effect and related mechanism have not been elucidated. PURPOSE: The aim of this study was to examine whether RFG can ameliorate obesity and the mechanism of lipid accumulation regulated by RFG. STUDY DESIGN: In in vitro experiments, we confirmed the anti-adipogenic effect of RFG using 3T3-L1 cells and human adipose mesenchymal stem cells (hAMSCs). To confirm the anti-obesity effect, High-Fat Diet (HFD)-induced obese mice were selected as a model. METHODS: We investigated anti-adipogenic effects of RFG using MTS assay, Oil Red O Staining, real-time RT-PCR, western blot analysis, and immunofluorescence staining. The anti-obesity effect of RFG was confirmed in HFD-induced mice model using hematoxylin and eosin staining and serum analysis. RESULTS: RFG inhibited lipid accumulation in 3T3-L1 cells and hAMSCs by reducing expression of mammalian targets of rapamycin (mTOR), peroxisome proliferator-activated receptor (PPAR)γ, and CCAAT-enhancer binding protein (C/EBP)α. RFG phosphorylated AMP-activated protein kinase (AMPK) in a liver kinase B (LKB) 1-independent manner. Moreover, the anti-adipogenic effect of RFG was blocked by AMPK inhibitor. These results suggest that RFG inhibits lipid accumulation via AMPK signaling. Furthermore, RFG reduced the body weight, size of epididymal white adipose tissue (eWAT), and fatty liver in the mice. RFG also suppressed levels of adipogenic factors PPARγ, C/EBPα, FAS, LPL, and aP2) by activating AMPK in the eWAT and liver. CONCLUSION: RFG can ameliorate obesity, and thus, could be used as a therapeutic agent for treating obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Cromonas/farmacologia , Glucosídeos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Serina-Treonina Quinases TOR/metabolismo
9.
J Ethnopharmacol ; 220: 177-187, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29601980

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The pharmacological effect derived from herb-herb interaction is important to constitute the prescription especially in traditional oriental medicine. The relationship of two medicinal herbs is called "couplet medicinals" which is used in pair for the purpose of enhancing the therapeutic effect, reducing the toxic effect or the adverse effect. The "Eighteen Incompatible Medicaments" constitute one of the contents in the incompatibility of traditional oriental drugs in a prescription. Among the "Eighteen Incompatible Medicaments", the roots and rhizomes of Veratrum nigrum (VN), is incompatible with the roots and rhizomes of Panax ginseng (PG). However, definite evidences of adverse effect by these combinations has yet to be reported. MATERIALS AND METHODS: The aim of the present study was to investigate the effects of ethanol extracts of PG, VN, and their combination (P + V) on the metastatic ability of colorectal cancer (CRC) cells using WST assay, flow cytometry, western blot analysis, real-time RT-PCR, immunofluorescence, migration assay, invasion assay, zymography, and an in vivo experiment with a lung-metastasis mouse model. RESULTS: The PG extract decreased cell proliferation by inducing cell cycle arrest and apoptosis of CRC cells. In addition, PG inhibited metastatic abilities of CRC cells including Epithelial-Mesenchymal Transition, migration, and invasion. Additionally, the PG extract suppressed lung metastasis of the CRC cells in the mouse model. However, the P + V extract exhibited weaker anti-proliferative and anti-metastatic effects than PG alone. CONCLUSION: Based on these results, the P + V couplet medicinal attenuates the anti-metastatic effects of PG, both in vitro and in vivo.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Panax/química , Extratos Vegetais/farmacologia , Veratrum/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/administração & dosagem , Raízes de Plantas , Rizoma
10.
J Agric Food Chem ; 65(43): 9443-9452, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28976750

RESUMO

The Arctium lappa seeds (Arctii Fructus) and its major active compound, arctigenin (ARC), are known to have anticancer, antiobesity, antiosteoporosis, and anti-inflammatory activities. However, the effect of Arctii Fructus and ARC on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, we attempted to investigate the antiallergic activity of Arctii Fructus and ARC on mast cells and experimental mouse models. Arctii Fructus water extract (AFW) or ethanol extract (AFE) and ARC reduced the production of histamine and pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, IL-8, and TNF-α in mast cells. AFW, AFE, and ARC inhibited phosphorylation of MAPKs and NF-κB in activated mast cells. Moreover, IgE-mediated passive cutaneous anaphylaxis and compound 48/80-induced anaphylactic shock were suppressed by AFW, AFE, and ARC administration. These results suggest that Arctii Fructus and ARC are potential therapeutic agents against allergic inflammatory diseases.


Assuntos
Anafilaxia/tratamento farmacológico , Antialérgicos/administração & dosagem , Arctium/química , Furanos/administração & dosagem , Lignanas/administração & dosagem , Mastócitos/imunologia , Extratos Vegetais/administração & dosagem , Anafilaxia/genética , Anafilaxia/imunologia , Animais , Antialérgicos/química , Furanos/análise , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Lignanas/análise , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
11.
Am J Chin Med ; 45(6): 1309-1325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28830210

RESUMO

Although Arctii Fructus (AF) has been shown to have various pharmacological effects, there have been no studies concerning the inhibitory effects of AF on the metastatic properties of colorectal cancer (CRC). The aim of this study was to investigate whether AF could suppress CRC progression by inhibiting cell growth, epithelial-mesenchymal transition (EMT), migration, and the invasion ability of CRC cells. AF decreased proliferation of CRC cells by inducing cell cycle arrest and apoptosis via extrinsic and intrinsic apoptotic pathways. Regarding metastatic properties, AF inhibited EMT by increasing the expression of the epithelial marker, E-cadherin, and decreasing the expression of the mesenchymal marker, N-cadherin, in CT26 cells. Moreover, AF decreased the migration and invasion of CT26 cells by inhibiting matrix metalloproteinase-2 (MMP-2) and MMP-9 activity. We confirmed that the decreased invasion ability and MMP-9 activity by AF treatment involved AMP-activated protein kinase (AMPK) activation. Collectively, this study demonstrates that AF inhibits the proliferation and metastatic properties of CRC cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Arctium/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Frutas/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Extratos Vegetais/isolamento & purificação
12.
Am J Chin Med ; 45(5): 1047-1060, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659027

RESUMO

Eclipta prostrata (EP) and its compounds are known to have several pharmacological effects including anti-inflammatory effects. In the present study, we demonstrated that EP improves the dextran sulfate sodium (DSS)-induced colitis symptoms such as body weight loss, colon length shortening and disease activity index. In DSS-induced colitis tissue, EP controls the protein expressions of cyclooxygenase-2 (COX-2) and hypoxia inducible factor-1[Formula: see text] (HIF-1[Formula: see text]). In addition, the release of prostaglandin E2 and vascular endothelial growth factor-A were significantly reduced by EP administration. EP also inhibited COX-2 and HIF-1[Formula: see text] expressions in the tumor necrosis factor-[Formula: see text] stimulated HT-29 cells. These inhibitory effects of EP occurred by reducing the phosphorylation of I[Formula: see text]B and the translocation of the nuclear factor-[Formula: see text]B (NF-[Formula: see text]B). Additionally, we found through HPLC analysis that wedelolactone, which is an inhibitor of NF-[Formula: see text]B transcription, was contained in water extract of EP. These results indicate that EP can improve colitis symptoms through the modulation of immune function in intestinal epithelial cells and suggests that EP has the potential therapeutic effect to intestinal inflammation.


Assuntos
Anti-Inflamatórios , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Eclipta/química , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Mediadores da Inflamação/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Doença Aguda , Animais , Células Cultivadas , Colite/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Células HT29 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo
13.
J Ginseng Res ; 41(2): 134-143, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413317

RESUMO

BACKGROUND: The prevalence of allergic inflammatory diseases such as atopic dermatitis (AD), asthma, and allergic rhinitis worldwide has increased and complete recovery is difficult. Korean Red Ginseng, which is the heat-processed root of Panax ginseng Meyer, is widely and frequently used as a traditional medicine in East Asia. In this study, we investigated whether Korean Red Ginseng water extract (RGE) regulates the expression of proinflammatory cytokines and chemokines via the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa B (NF-κB) pathway in allergic inflammation. METHODS: Compound 48/80-induced anaphylactic shock and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced AD-like skin lesion mice models were used to investigate the antiallergic effects of RGE. Human keratinocytes (HaCaT cells) and human mast cells (HMC-1) were also used to clarify the effects of RGE on the expression of proinflammatory cytokines and chemokines. RESULTS: Anaphylactic shock and DNFB-induced AD-like skin lesions were attenuated by RGE administration through reduction of serum immunoglobulin E (IgE) and interleukin (IL)-6 levels in mouse models. RGE also reduced the production of proinflammatory cytokines including IL-1ß, IL-6, and IL-8, and expression of chemokines such as IL-8, thymus and activation-regulated chemokine (TARC), and macrophage-derived chemokine (MDC) in HaCaT cells. Additionally, RGE decreased the release of tumor necrosis factor-α (TNF-α), IL-1ß, IL-6, and IL-8 as well as expressions of chemokines including macrophage inflammatory protein (MIP)-1α, MIP-1ß, regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein (MCP)-1, and IL-8 in HMC-1 cells. Furthermore, our data demonstrated that these inhibitory effects occurred through blockage of the MAPK and NF-κB pathway. CONCLUSION: RGE may be a useful therapeutic agent for the treatment of allergic inflammatory diseases such as AD-like dermatitis.

14.
Integr Cancer Ther ; 16(4): 585-596, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27923905

RESUMO

BACKGROUND: ß-Lapachone is a quinone-containing compound found in red lapacho ( Tabebuia impetiginosa, syn. T avellanedae) trees. Lapacho has been used in traditional medicine by several South and Central American indigenous people to treat various types of cancer. The purpose of this study was to investigate the antimetastatic properties of ß-lapachone and the underlying mechanisms using colon cancer cells. METHODS: This research used metastatic murine colon cancer cell lines, colon 26 (CT26) and colon 38 (MC38). A WST assay, annexin V assay, cell cycle analysis, wound healing assay, invasion assay, western blot analysis, and real-time reverse transcription-polymerase chain reaction were performed to examine the effects of ß-lapachone on metastatic phenotypes and molecular mechanisms. The effect of ß-lapachone on lung metastasis was assessed in a mouse experimental metastasis model. RESULTS: We found that the inhibition of proliferation of the colon cancer cell lines by ß-lapachone was due to the induction of apoptosis and cell cycle arrest. ß-Lapachone induced the apoptosis of CT26 cells through caspase-3, -8, and -9 activation; poly(ADP-ribose) polymerase cleavage; and downregulation of the Bcl-2 family in a dose- and time-dependent manner. In addition, a low concentration of ß-lapachone decreased the cell migration and invasion by decreasing the expression of matrix metalloproteinases-2 and -9, and increased the expression of tissue inhibitors of metalloproteinases-1 and -2. Moreover, ß-lapachone treatment regulated the expression of epithelial-mesenchymal transition markers such as E- and N-cadherin, vimentin, ß-catenin, and Snail in CT26 cells. In the mouse experimental metastasis model, ß-lapachone significantly inhibited the lung metastasis of CT26 cells. CONCLUSIONS: Our results demonstrated the inhibitory effect of ß-lapachone on colorectal lung metastasis. This compound may be useful for developing therapeutic agents to treat metastatic cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
15.
Front Pharmacol ; 7: 476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008317

RESUMO

Chrysophanic acid (CA) is a member of the anthraquinone family abundant in rhubarb, a widely used herb for obesity treatment in Traditional Korean Medicine. Though several studies have indicated numerous features of CA, no study has yet reported the effect of CA on obesity. In this study, we tried to identify the anti-obesity effects of CA. By using 3T3-L1 adipocytes and primary cultured brown adipocytes as in vitro models, high-fat diet (HFD)-induced obese mice, and zebrafish as in vivo models, we determined the anti-obesity effects of CA. CA reduced weight gain in HFD-induced obese mice. They also decreased lipid accumulation and the expressions of adipogenesis factors including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in 3T3-L1 adipocytes. In addition, uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the brown fat specific thermogenic genes, were up-regulated in brown adipocytes by CA treatment. Furthermore, when co-treated with Compound C, the AMP-activated protein kinase (AMPK) inhibitor, the action of CA on AMPKα was nullified in both types of adipocytes, indicating the multi-controlling effect of CA was partially via the AMPKα pathway. Given all together, these results indicate that CA can ameliorate obesity by controlling the adipogenic and thermogenic pathway at the same time. On these bases, we suggest the new potential of CA as an anti-obese pharmacotherapy.

16.
Food Funct ; 7(12): 5025-5033, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27882370

RESUMO

Arctii Fructus is traditionally used in oriental pharmacies as an anti-inflammatory medicine. Although several studies have shown its anti-inflammatory effects, there have been no reports on its use in obesity related studies. In this study, the anti-obesity effect of Arctii Fructus was investigated in high-fat diet (HFD)-induced obese mice, and the effect was confirmed in white and primary cultured brown adipocytes. Arctii Fructus inhibited weight gain and reduced the mass of white adipose tissue in HFD-induced obese mice. Serum levels of triglyceride and LDL-cholesterol were reduced, and HDL-cholesterol was increased in the Arctii Fructus treated group. In 3T3-L1 cells, a water extract (WAF) and 70% EtOH extract (EtAF) of Arctii Fructus significantly inhibited adipogenesis and suppressed the expression of proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha. In particular, EtAF activated the phosphorylation of AMP-activated protein kinase. On the other hand, uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, known as brown adipocytes specific genes, were increased in primary cultured brown adipocytes by WAF and EtAF. This study shows that Arctii Fructus prevents the development of obesity through the inhibition of white adipocyte differentiation and activation of brown adipocyte differentiation which suggests that Arctii Fructus could be an effective therapeutic for treating or preventing obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Arctium/química , Gorduras na Dieta/efeitos adversos , Extratos Vegetais/farmacologia , Células 3T3-L1 , Animais , Fármacos Antiobesidade/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , PPAR gama/metabolismo , Extratos Vegetais/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Phytomedicine ; 23(13): 1680-1690, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27823633

RESUMO

BACKGROUND: Quercetin is a major dietary flavonoid found in a various fruits, vegetables, and grains. Although the inhibitory effects of quercetin have previously been observed in several types of cancer cells, the anti-metastatic effect of quercetin on colorectal metastasis has not been determined. PURPOSE: This study investigated whether quercetin exhibits inhibitory effect on colorectal lung metastasis. STUDY DESIGN: The effects of quercetin on cell viability, mitogen-activated protein kinases (MAPKs) activation, migration, invasion, epithelial-mesenchymal transition (EMT) and lung metastasis were investigated. METHODS: We investigated the effect of quercetin on metastatic colon cancer cells using WST assay, Annexin V assay, real-time RT-PCR, western blot analysis and gelatin zymography. The anti-metastatic effect of quercetin in vivo was confirmed in a colorectal lung metastasis model. RESULTS: Quercetin inhibited the cell viability of colon 26 (CT26) and colon 38 (MC38) cells and induced apoptosis through the MAPKs pathway in CT26 cells. Expression of EMT markers, such as E-, N-cadherin, ß-catenin, and snail, were regulated by non-toxic concentrations of quercetin. Moreover, the migration and invasion abilities of CT26 cells were inhibited by quercetin through expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) regulation. Quercetin markedly decreased lung metastasis of CT26 cells in an experimental in vivo metastasis model. CONCLUSION: In conclusion, this study demonstrates for the first time that quercetin can inhibit the survival and metastatic ability of CT26 cells, and it can subsequently suppress colorectal lung metastasis in the mouse model. These results indicate that quercetin may be a potent therapeutic agent for the treatment of metastatic colorectal cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/patologia , Neoplasias Pulmonares/tratamento farmacológico , Quercetina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-27143989

RESUMO

This study was performed in order to investigate the antiobese effects of the ethanolic extract of Veratri Nigri Rhizoma et Radix (VN), a herb with limited usage, due to its toxicology. An HPLC analysis identified jervine as a constituent of VN. By an Oil Red O assay and a Real-Time RT-PCR assay, VN showed higher antiadipogenic effects than jervine. In high-fat diet- (HFD-) induced obese C57BL/6J mice, VN administration suppressed body weight gain. The levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), adipocyte fatty-acid-binding protein (aP2), adiponectin, resistin, and LIPIN1 were suppressed by VN, while SIRT1 was upregulated. Furthermore, VN activated phosphorylation of the liver kinase B1- (LKB1-) AMP-activated protein kinase alpha- (AMPKα-) acetyl CoA carboxylase (ACC) axis. Further investigation of cotreatment of VN with the AMPK agonist AICAR or AMPK inhibitor Compound C showed that VN can activate the phosphorylation of AMPKα in compensation to the inhibition of Compound C. In conclusion, VN shows antiobesity effects in HFD-induced obese C57BL/6J mice. In 3T3-L1 adipocytes, VN has antiadipogenic features, which is due to activating the LKB1-AMPKα-ACC axis. These results suggest that VN has a potential benefit in preventing obesity.

19.
Am J Chin Med ; 44(3): 565-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27109161

RESUMO

Rutin, also called rutoside or quercetin-3-O-rutinoside and sophorin, is a glycoside between the flavonol quercetin and the disaccharide rutinose. Although many effects of rutin have been reported in vitro and in vivo, the anti-adipogenic effects of rutin have not been fully reported. The aim of this study was to confirm how rutin regulates adipocyte related factors. In this study, rutin decreased the expressions of adipogenesis-related genes, including peroxisome proliferators, activated receptor [Formula: see text] (PPAR[Formula: see text], CCAAT/enhancer-binding protein [Formula: see text] (C/EBP[Formula: see text], fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase in 3T3-L1 cells. Rutin also repressed the expression of lipin1, which is an upstream regulator that controls PPAR[Formula: see text] and C/EBP[Formula: see text]. In addition, when 3T3-L1 was transfected with lipin1 siRNA to block lipin1 function, rutin did not affect the expressions of PPAR[Formula: see text] and C/EBP[Formula: see text]. These results suggest that rutin has an anti-adipogenic effect that acts through the suppression of lipin1, as well as PPAR[Formula: see text] and C/EBP[Formula: see text].


Assuntos
Adipogenia/efeitos dos fármacos , Adipogenia/genética , Proteínas Nucleares/fisiologia , Fosfatidato Fosfatase/fisiologia , Rutina/farmacologia , Células 3T3 , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Proteínas Nucleares/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidato Fosfatase/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
20.
Am J Chin Med ; 43(4): 731-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26119957

RESUMO

In this study, we found that alpha-pinene (α-pinene) exhibits anti-inflammatory activity through the suppression of mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) pathway in mouse peritoneal macrophages. α-Pinene is found in the oils of many coniferous trees and rosemary. We investigated the inhibitory effects of α-Pinene on inflammatory responses induced by lipopolysaccharide (LPS) using mouse peritoneal macrophages. α-Pinene significantly decreased the LPS-induced production of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO). α-Pinene also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in LPS-stimulated macrophages. Additionally, the activations of MAPKs and NF-κB were attenuated by means of α-pinene treatment. These results indicate that α-pinene has an anti-inflammatory effect and that it is a potential candidate as a new drug to treat various inflammatory diseases.


Assuntos
Anti-Inflamatórios , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos Peritoneais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monoterpenos/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Monoterpenos Bicíclicos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Depressão Química , Inflamação/tratamento farmacológico , Inflamação/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Monoterpenos/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA