RESUMO
BACKGROUND: Previous study found that supplements with active vitamin D3 alleviated experimental colitis. The objective of this study was to investigate the possible role of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a ketone synthase, on vitamin D3 protecting against experimental colitis. METHODS: HMGCS2 and vitamin D receptor (VDR) were measured in UC patients. The effects of vitamin D deficiency (VDD) and exogenous 1,25(OH)2D3 supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. DSS-induced oxidative stress and inflammation were analyzed in HT-29 cells. HMGCS2 was detected in 1,25(OH)2D3-pretreated HT-29 cells and mouse intestines. HMGCS2 was silenced to investigate the role of HMGCS2 in 1,25(OH)2D3 protecting against experimental colitis. RESULTS: Intestinal HMGCS2 downregulation was positively correlated with VDR reduction in UC patients. The in vivo experiments showed that VDD exacerbated DSS-induced colitis. By contrast, 1,25(OH)2D3 supplementation ameliorated DSS-induced colon damage, oxidative stress and inflammation. HMGCS2 was up-regulated after 1,25(OH)2D3 supplementation both in vivo and in vitro. Transfection with HMGCS2-siRNA inhibited antioxidant and anti-inflammatory effects of 1,25(OH)2D3 in DSS-treated HT-29 cells. CONCLUSION: 1,25(OH)2D3 supplementation up-regulates HMGCS2, which is responsible for 1,25(OH)2D3-mediated protection against oxidative stress and inflammation in DSS-induced colitis. These findings provide a potential therapeutic strategy for alleviating colitis-associated oxidative stress and inflammation.
Assuntos
Colite , Humanos , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Inflamação/tratamento farmacológico , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Colecalciferol/uso terapêutico , Estresse Oxidativo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Hidroximetilglutaril-CoA SintaseRESUMO
Andrographolide is a prescribed drug used for preventing and treating the common cold, influenza, viral infections or allergies. However, its poor water solubility enormously limits its bioavailability. In the present study, we aimed at examining and comparing the effect of andrographolide sulfonate (trade name: Xi-Yan-Ping Injection), a water-soluble form made from andrographolide through sulfonating reaction, on the treatment of murine sepsis model induced by lipopolysaccharide (LPS). Pretreatment with andrographolide sulfonate significantly decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and transaminase activities in serum, attenuated liver and lung damage, and improved the survival of mice with experimental sepsis. Andrographolide sulfonate also remarkably reduced the expression levels of TNF-α, IL-1ß, IL-6 and inducible nitric oxide synthase in the injured liver from septic mice. Moreover, andrographolide sulfonate time-dependently suppressed the activation of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK1/2) or c-Jun NH(2)-terminal kinase (JNK). Furthermore, pretreatment with andrographolide sulfonate markedly inhibited the activation of p65 subunit of nuclear factor-κB (NF-κB) as well as signal transducers and activators of transcription 3 (STAT3) in the injured liver from mice with endotoxic shock. Notably, andrographolide sulfonate showed a much stronger alleviation of LPS-induced sepsis in mice compared with andrographolide. Taken together, these results reveal that andrographolide sulfonate ameliorates sepsis in mice through suppressing p38 MAPK, STAT3 and NF-κB pathways and suggest that andrographolide sulfonate has an advantage of andrographolide for the treatment of endotoxin shock.