Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479258

RESUMO

BACKGROUND: The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE: This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS: In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS: APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION: APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.


Assuntos
Astrágalo , Ácidos Graxos Insaturados , Fluoruracila , Microbioma Gastrointestinal , Polissacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Camundongos , Astrágalo/química , Ácidos Graxos Insaturados/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Transplante de Microbiota Fecal , Colo/efeitos dos fármacos
2.
Sci Total Environ ; 919: 170784, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340834

RESUMO

Reclaimed water with nitrogen, phosphorus, and other contaminants may trigger algal blooms during its ecological utilization in replenishing rivers or lakes. However, the effect of reclaimed water on algal growth rates is not well understood. In this study, the growth potentials of algae in terms of Cyanophyta, Chlorophyta, and Bacillariophyta, as well as mixed algae in both regular culture medium and reclaimed water produced from treatment plants in Beijing with similar N and P concentrations, were compared to evaluate whether reclaimed water could facilitate algal growth. In addition, reclaimed water was also sterilized to verify the impact of bacteria's presence on algal growth. The results indicated that most algae grew faster in reclaimed water, among which the growth rate of Microcystis aeruginosa even increased by 5.5 fold. The growth of mixed algae in reclaimed water was not enhanced due to the strong adaptive ability of the community structure. Residual bacteria in the reclaimed water were found to be important contributors to algal growth. This work provided theoretical support for the safe and efficient utilization of reclaimed water.


Assuntos
Cianobactérias , Microcystis , Pequim , Água , Eutrofização , Fósforo/análise , China
3.
Int J Biol Sci ; 20(2): 680-700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169582

RESUMO

Vascular remodeling plays a vital role in hypertensive diseases and is an important target for hypertension treatment. Irisin, a newly discovered myokine and adipokine, has been found to have beneficial effects on various cardiovascular diseases. However, the pharmacological effect of irisin in antagonizing hypertension-induced vascular remodeling is not well understood. In the present study, we investigated the protection and mechanisms of irisin against hypertension and vascular remodeling induced by angiotensin II (Ang II). Adult male mice of wild-type, FNDC5 (irisin-precursor) knockout, and FNDC5 overexpression were used to develop hypertension by challenging them with Ang II subcutaneously in the back using a microosmotic pump for 4 weeks. Similar to the attenuation of irisin on Ang II-induced VSMCs remodeling, endogenous FNDC5 ablation exacerbated, and exogenous FNDC5 overexpression alleviated Ang II-induced hypertension and vascular remodeling. Aortic RNA sequencing showed that irisin deficiency exacerbated intracellular calcium imbalance and increased vasoconstriction, which was parallel to the deterioration in both ER calcium dysmetabolism and ER stress. FNDC5 overexpression/exogenous irisin supplementation protected VSMCs from Ang II-induced remodeling by improving endoplasmic reticulum (ER) homeostasis. This improvement includes inhibiting Ca2+ release from the ER and promoting the re-absorption of Ca2+ into the ER, thus relieving Ca2+-dependent ER stress. Furthermore, irisin was confirmed to bind to its receptors, αV/ß5 integrins, to further activate the AMPK pathway and inhibit the p38 pathway, leading to vasoprotection in Ang II-insulted VSMCs. These results indicate that irisin protects against hypertension and vascular remodeling in Ang II-challenged mice by restoring calcium homeostasis and attenuating ER stress in VSMCs via activating AMPK and suppressing p38 signaling.


Assuntos
Angiotensina II , Hipertensão , Camundongos , Masculino , Animais , Angiotensina II/metabolismo , Fibronectinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Remodelação Vascular , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Estresse do Retículo Endoplasmático
4.
Bioresour Technol ; 393: 130143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042434

RESUMO

Nitrogen (N) and phosphorus (P) absorbed by algae in the suspended-solid phase photobioreactor (ssPBR) have emerged as an efficient pathway to purify the effluent of wastewater treatment plants (WWTPs). However, the key operational parameters of the ssPBR need to be optimized. In this study, the stability of the system after sequential batch operations and the efficiency under various influent P concentrations were evaluated. The results demonstrated that the ssPBR maintained a high N/P removal efficiency of 96 % and 98 %, respectively, after 5 cycles. When N was kept at 15 mg/L and P ranged from 1.5 to 3.0 mg/L, the system yielded plenty of algae products and guaranteed the effluent quality that met the discharge standards. Notably, the carriers were a key contributor to the high metabolism of algae and high performance. This work provided theoretical ideas and technical guidance for effluent quality improvement in WWTPs.


Assuntos
Microalgas , Purificação da Água , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotobiorreatores , Purificação da Água/métodos , Biomassa , Microalgas/metabolismo
5.
Zhen Ci Yan Jiu ; 48(12): 1202-1208, 2023 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38146242

RESUMO

OBJECTIVES: To observe the effect of moxibustion on the polarization of microglia towards M2 direction in Alzheimer's disease (AD) mice through the interleukin-33 (IL-33)/growth stimulating gene 2 protein (ST2) signaling pathway. METHODS: Five-month-old APP/PS1 male mice were randomly divided into model and moxibustion (Moxi) groups, and C57BL/6J mice of the same age were as the control group, with 9 mice in each group. In the Moxi group, moxibustion was applied at "Baihui" (GV20) and "Yongquan" (KI1) for 30 min, once a day, 5 days a week for 4 weeks. The spatial learning memory ability was observed by the Morris water maze test. The relative expressions of IL-33 and ST2 in hippocampus were detected by Western blot. The positive expression of amyloid-ß (Aß), phosphorylated Tau (p-Tau), IL-33/ionized calcium binding adapter molecule 1(Iba-1), ST2/Iba-1, arginase 1 (Arg1)/Iba-1 and indu-cible nitric oxide synthase (iNOS)/Iba-1 in hippocampal CA1 region were detected by immunofluorescence. RESULTS: Compared with the control group, the escape latency of the mice in the model group was prolonged (P<0.001, P<0.01), the number of times to enter the effective area and the percentage of target quadrant swimming time were reduced (P<0.001), the positive expression of both Aß and p-Tau, the positive expression of iNOS/Iba-1 in the hippocampal CA1 region was increased (P<0.001), while the expression of IL-33 and ST2 protein in hippocampal tissue, the positive expression levels of IL-33/Iba-1, ST2/Iba-1 and Arg1/Iba-1 in hippocampal CA1 region were all decreased (P<0.05, P<0.001). After treatment, compared with the model group, the escape latency of the mice in the moxibustion group was shortened (P<0.001, P<0.01), the number of entries into the effective area and the percentage of target quadrant swimming time were increased (P<0.001), the positive expression of Aß and p-Tau in the hippocampal CA1 region, and the positive expression of iNOS/Iba-1 were decreased (P<0.001), while the expression of IL-33 and ST2 protein in the hippocampal tissue, the positive expression of IL-33/Iba-1, ST2/Iba-1 and Arg1/Iba-1 in hippocampal CA1 region were all increased (P<0.05, P<0.01, P<0.001). CONCLUSIONS: Moxibustion can improve the spatial learning and memory abilities, reduce the pathological deposition of Aß and p-Tau in APP/PS1 mice, which may be related to its function in up-regulating the IL-33/ST2 signaling pathway to regulate the polarization of microglia towards M2 direction.


Assuntos
Doença de Alzheimer , Moxibustão , Camundongos , Masculino , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Interleucina-33/genética , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos
6.
Chem Biodivers ; 20(12): e202301454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874779

RESUMO

Phytochemical investigation on the anti-inflammatory fraction extracted from the whole plant of Euphorbia helioscopia L. led to the isolation of three new ent-atisane diterpenoids (1-3) and five known analogues (4-8). The structures and absolute configurations of the new compounds were elucidated by comprehensive analysis of the NMR, MS, IR, ECD, and X-ray crystallography. It is worth mentioning that compound 3 belongs to a rare class of ent-atisane diterpenoid featuring a hydroxyl group at C-9. Bioactivity investigation showed that compounds 4, 7, and 8 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner, which indicates their anti-inflammatory potential.


Assuntos
Diterpenos , Euphorbia , Euphorbia/química , Diterpenos/farmacologia , Diterpenos/química , Espectroscopia de Ressonância Magnética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estrutura Molecular
7.
Front Immunol ; 14: 1187574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727787

RESUMO

Background: We aimed to use transcriptomics, bioinformatics analysis, and core gene validation to identify the core gene and potential mechanisms for electroacupuncture (EA) treatment of ulcerative colitis (UC). Materials and methods: EA was performed in mice after induction of UC via dextran sodium sulfate. Body weight, disease activity index (DAI), colon length, and hematoxylin-eosin of the colon tissue were used to evaluate the effects of EA. Mice transcriptome samples were analyzed to identify the core genes, and further verified with human transcriptome database; the ImmuCellAI database was used to analyze the relationship between the core gene and immune infiltrating cells (IICs); and immunofluorescence was used to verify the results. Results: EA could reduce DAI and histological colitis scores, increase bodyweight and colon length, and improve the expression of local and systemic proinflammatory factors in the serum and colon of UC mice. Eighteen co-differentially expressed genes were identified by joint bioinformatics analyses of mouse and human transcriptional data; Cxcl1 was the core gene. EA affected IICs by inhibiting Cxcl1 expression and regulated the polarization of macrophages by affecting the Th1 cytokine IFN-γ, inhibiting the expression of CXCL1. Conclusions: CXCL1 is the target of EA, which is associated with the underlying immune mechanism related to Th1 cytokine IFN-γ.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Humanos , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Transcriptoma , Citocinas , Peso Corporal , Quimiocina CXCL1
8.
Nat Commun ; 14(1): 5451, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673856

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/genética , Ácidos e Sais Biliares , Citoplasma , Camundongos Knockout , Ácidos Graxos
9.
Exp Biol Med (Maywood) ; 248(14): 1229-1241, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37438919

RESUMO

The aim of this study was to elucidate the key targets of acupuncture in the colon of ulcerative colitis (UC) mice model using full-length transcriptome sequencing. 2.5% dextran sodium sulfate (DSS)-induced colitis mice were treated with or without acupuncture. Intestinal pathology was observed, and full transcriptome sequencing and bioinformatic analysis were performed. The results demonstrated that acupuncture treatment reduced the UC symptoms, disease activity index score, and histological colitis score and increased body weight, colon length, and the number of intestinal goblet cells. In addition, acupuncture can also decrease the expression of necrotic biomarker phosphorylates mixed lineage kinase domain-like pseudo kinase (p-MLKL). Full-length transcriptome analysis indicated that acupuncture reversed the expression of 987 of the 1918 upregulated differentially expressed genes (DEGs), and 632 of the 1351 downregulated DEGs induced by DSS. DEGs regulated by acupuncture were mainly involved in inflammatory responses and intestinal barrier pathways. The protein-protein interaction network analysis revealed that matrix metalloproteinases (MMPs) are important genes regulated by acupuncture. Gene set enrichment analysis revealed that extracellular matrix (ECM)-receptor interaction was an important target of acupuncture. In addition, alternative splicing analysis suggested that acupuncture improved signaling pathways related to intestinal permeability, the biological processes of xenobiotics, sulfur compounds, and that monocarboxylic acids are closely associated with MMPs. Overall, our transcriptome analysis results indicate that acupuncture improves intestinal barrier function in UC through negative regulation of MMPs expression.


Assuntos
Terapia por Acupuntura , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/terapia , Colite Ulcerativa/metabolismo , Colite/induzido quimicamente , Colo/metabolismo , Metaloproteinases da Matriz/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
10.
Adv Sci (Weinh) ; 10(19): e2300880, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37408520

RESUMO

Preventing islet ß-cells death is crucial for treating type 2 diabetes mellitus (T2DM). Currently, clinical drugs are being developed to improve the quality of T2DM care and self-care, but drugs focused on reducing islets ß-cell death are lacking. Given that ß-cell death in T2DM is dominated ultimately by excessive reactive oxygen species (ROS), eliminating excessive ROS in ß-cells is a highly promising therapeutic strategy. Nevertheless, no antioxidants have been approved for T2DM therapy because most of them cannot meet the long-term and stable elimination of ROS in ß-cells without eliciting toxic side-effects. Here, it is proposed to restore the endogenous antioxidant capacity of ß-cells to efficiently prevent ß-cell death using selenium nanodots (SENDs), a prodrug of the antioxidant enzyme glutathione peroxidase 1 (GPX1). SENDs not only scavenge ROS effectively, but also "send" selenium precisely to ß-cells with ROS response to greatly enhance the antioxidant capacity of ß-cells by increasing GPX1 expression. Therefore, SENDs greatly rescue ß-cells by restoring mitophagy and alleviating endoplasmic reticulum stress (ERS), and demonstrate much stronger efficacy than the first-line drug metformin for T2DM treatment. Overall, this strategy highlights the great clinical application prospects of SENDs, offering a paradigm for an antioxidant enzyme prodrug for T2DM treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Pró-Fármacos , Selênio , Humanos , Antioxidantes/farmacologia , Selênio/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitofagia , Estresse Oxidativo , Glutationa Peroxidase GPX1 , Estresse do Retículo Endoplasmático
11.
Colloids Surf B Biointerfaces ; 227: 113387, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37285669

RESUMO

Cancer has emerged as one of the severe ailments due to the uncontrolled proliferation rate of cells, accounting for millions of deaths annually. Despite the availability of various treatment strategies, including surgical interventions, radiation, and chemotherapy, tremendous advancements in the past two decades of research have evidenced the generation of different nanotherapeutic designs toward providing synergistic therapy. In this study, we demonstrate the assembly of a versatile nanoplatform based on the hyaluronic acid (HA)-coated molybdenum dioxide (MoO2) assemblies to act against breast carcinoma. The hydrothermal approach-assisted MoO2 constructs are immobilized with doxorubicin (DOX) molecules on the surface. Further, these MoO2-DOX hybrids are encapsulated with the HA polymeric framework. Furthermore, the versatile nanocomposites of HA-coated MoO2-DOX hybrids are systematically characterized using various characterization techniques, and explored biocompatibility in the mouse fibroblasts (L929 cell line), as well as synergistic photothermal (808-nm laser irradiation for 10 min, 1 W/cm2) and chemotherapeutic properties against breast carcinoma (4T1 cells). Finally, the mechanistic views concerning the apoptosis rate are explored using the JC-1 assay to measure the intracellular mitochondrial membrane potential (MMP) levels. In conclusion, these findings indicated excellent photothermal and chemotherapeutic efficacies, exploring the enormous potential of MoO2 composites against breast cancer.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Camundongos , Fototerapia , Doxorrubicina , Molibdênio/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
12.
Zhongguo Zhong Yao Za Zhi ; 48(3): 689-699, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872232

RESUMO

The peeled stems of Syringa pinnatifolia(SP) is a representative Mongolian folk medicine with the effects of anti-depression, heat clearance, pain relief, and respiration improvement. It has been clinically used for the treatment of coronary heart disease, insomnia, asthma, and other cardiopulmonary diseases. As part of the systematic study on pharmacological substances of SP, 11 new sesquiterpenoids were isolated from the terpene-containing fractions of the ethanol extract of SP by liquid chromatography-mass spectrometry(LC-MS) and proton nuclear magnetic resonance(~1H-NMR) guided isolation methods. The planar structures of the sesquiterpenoids were identified by MS, 1D NMR, and 2D NMR data analysis, and were named pinnatanoids C and D(1 and 2), and alashanoids T-ZI(3-11), respectively. The structure types of the sesquiterpenoids included pinnatane, humulane, seco-humulane, guaiane, carryophyllane, seco-erimolphane, isodaucane, and other types. However, limited to the low content of compounds, the existence of multiple chiral centers, the flexibility of the structure, or lack of ultraviolet absorption, the stereoscopic configuration remained unresolved. The discovery of various sesquiterpenoids enriches the understanding of the chemical composition of the genus and species and provides references for further analysis of pharmacological substances of SP.


Assuntos
Asma , Sesquiterpenos , Syringa , Terpenos , Cromatografia Líquida
13.
Zhongguo Zhong Yao Za Zhi ; 48(1): 170-182, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725269

RESUMO

This study aims to explore the mechanism of Qingkailing(QKL) Oral Preparation's heat-clearing, detoxifying, mind-tranquilizing effects based on "component-target-efficacy" network. To be specific, the potential targets of the 23 major components in QKL Oral Preparation were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The target genes were obtained based on UniProt. OmicsBean and STRING 10 were used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. Cytoscape 3.8.2 was employed for visualization and construction of "component-target-pathway-pharmacological effect-efficacy" network, followed by molecular docking between the 23 main active components and 15 key targets. Finally, the lipopolysaccharide(LPS)-induced RAW264.7 cells were adopted to verify the anti-inflammatory effect of six monomer components in QKL Oral Preparation. It was found that the 23 compounds affected 33 key signaling pathways through 236 related targets, such as arachidonic acid metabolism, tumor necrosis factor α(TNF-α) signaling pathway, inflammatory mediator regulation of TRP channels, cAMP signaling pathway, cGMP-PKG signaling pathway, Th17 cell differentiation, interleukin-17(IL-17) signaling pathway, neuroactive ligand-receptor intera-ction, calcium signaling pathway, and GABAergic synapse. They were involved in the anti-inflammation, immune regulation, antipyretic effect, and anti-convulsion of the prescription. The "component-target-pathway-pharmacological effect-efficacy" network of QKL Oral Preparation was constructed. Molecular docking showed that the main active components had high binding affinity to the key targets. In vitro cell experiment indicated that the six components in the prescription(hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide) can reduce the expression of nitric oxide(NO), TNF-α, and interleukin-6(IL-6) in cell supernatant(P<0.05). Thus, the above six components may be the key pharmacodynamic substances of QKL Oral Preparation. The major components in QKL Oral Prescription, including hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide, cholic acid, isochlorogenic acid A, and γ-aminobutyric acid, may interfere with multiple biological processes related to inflammation, immune regulation, fever, and convulsion by acting on the key protein targets such as IL-6, TNF, prostaglandin-endoperoxide synthase 2(PTGS2), arachidonate 5-lipoxygenase(ALOX5), vascular cell adhesion molecule 1(VCAM1), nitric oxide synthase 2(NOS2), prostaglandin E2 receptor EP2 subtype(PTGER2), gamma-aminobutyric acid receptor subunit alpha(GABRA), gamma-aminobutyric acid type B receptor subunit 1(GABBR1), and 4-aminobutyrate aminotransferase(ABAT). This study reveals the effective components and mechanism of QKL Oral Prescription.


Assuntos
Medicamentos de Ervas Chinesas , Fator de Necrose Tumoral alfa , Ácido Clorogênico , Medicamentos de Ervas Chinesas/farmacologia , Ácido gama-Aminobutírico , Interleucina-6 , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/genética , Animais , Camundongos , Células RAW 264.7
14.
Artigo em Chinês | WPRIM | ID: wpr-970512

RESUMO

This study aims to explore the mechanism of Qingkailing(QKL) Oral Preparation's heat-clearing, detoxifying, mind-tranquilizing effects based on "component-target-efficacy" network. To be specific, the potential targets of the 23 major components in QKL Oral Preparation were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The target genes were obtained based on UniProt. OmicsBean and STRING 10 were used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. Cytoscape 3.8.2 was employed for visualization and construction of "component-target-pathway-pharmacological effect-efficacy" network, followed by molecular docking between the 23 main active components and 15 key targets. Finally, the lipopolysaccharide(LPS)-induced RAW264.7 cells were adopted to verify the anti-inflammatory effect of six monomer components in QKL Oral Preparation. It was found that the 23 compounds affected 33 key signaling pathways through 236 related targets, such as arachidonic acid metabolism, tumor necrosis factor α(TNF-α) signaling pathway, inflammatory mediator regulation of TRP channels, cAMP signaling pathway, cGMP-PKG signaling pathway, Th17 cell differentiation, interleukin-17(IL-17) signaling pathway, neuroactive ligand-receptor intera-ction, calcium signaling pathway, and GABAergic synapse. They were involved in the anti-inflammation, immune regulation, antipyretic effect, and anti-convulsion of the prescription. The "component-target-pathway-pharmacological effect-efficacy" network of QKL Oral Preparation was constructed. Molecular docking showed that the main active components had high binding affinity to the key targets. In vitro cell experiment indicated that the six components in the prescription(hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide) can reduce the expression of nitric oxide(NO), TNF-α, and interleukin-6(IL-6) in cell supernatant(P<0.05). Thus, the above six components may be the key pharmacodynamic substances of QKL Oral Preparation. The major components in QKL Oral Prescription, including hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide, cholic acid, isochlorogenic acid A, and γ-aminobutyric acid, may interfere with multiple biological processes related to inflammation, immune regulation, fever, and convulsion by acting on the key protein targets such as IL-6, TNF, prostaglandin-endoperoxide synthase 2(PTGS2), arachidonate 5-lipoxygenase(ALOX5), vascular cell adhesion molecule 1(VCAM1), nitric oxide synthase 2(NOS2), prostaglandin E2 receptor EP2 subtype(PTGER2), gamma-aminobutyric acid receptor subunit alpha(GABRA), gamma-aminobutyric acid type B receptor subunit 1(GABBR1), and 4-aminobutyrate aminotransferase(ABAT). This study reveals the effective components and mechanism of QKL Oral Prescription.


Assuntos
Animais , Camundongos , Ácido Clorogênico , Medicamentos de Ervas Chinesas/farmacologia , Ácido gama-Aminobutírico , Interleucina-6 , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/genética
15.
Artigo em Chinês | WPRIM | ID: wpr-970538

RESUMO

The peeled stems of Syringa pinnatifolia(SP) is a representative Mongolian folk medicine with the effects of anti-depression, heat clearance, pain relief, and respiration improvement. It has been clinically used for the treatment of coronary heart disease, insomnia, asthma, and other cardiopulmonary diseases. As part of the systematic study on pharmacological substances of SP, 11 new sesquiterpenoids were isolated from the terpene-containing fractions of the ethanol extract of SP by liquid chromatography-mass spectrometry(LC-MS) and proton nuclear magnetic resonance(~1H-NMR) guided isolation methods. The planar structures of the sesquiterpenoids were identified by MS, 1D NMR, and 2D NMR data analysis, and were named pinnatanoids C and D(1 and 2), and alashanoids T-ZI(3-11), respectively. The structure types of the sesquiterpenoids included pinnatane, humulane, seco-humulane, guaiane, carryophyllane, seco-erimolphane, isodaucane, and other types. However, limited to the low content of compounds, the existence of multiple chiral centers, the flexibility of the structure, or lack of ultraviolet absorption, the stereoscopic configuration remained unresolved. The discovery of various sesquiterpenoids enriches the understanding of the chemical composition of the genus and species and provides references for further analysis of pharmacological substances of SP.


Assuntos
Syringa , Sesquiterpenos , Terpenos , Asma , Cromatografia Líquida
16.
Am J Chin Med ; 50(7): 1905-1925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185014

RESUMO

Patchouli alcohol (PA) has been widely used for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) in traditional Chinese medicine, and the related mechanism remains to be fully understood. Our previous study has indicated that PA significantly reduced visceral sensitivity and defecation area in IBS-D rats. In this study, we prepared an IBS-D rat model and observed the dynamic intestinal motility and colonic longitudinal muscle and myenteric plexus (LMMP) neurons, as well as their subtypes at D14, D21, and D28. After PA administration, we observed the effects on the changes in intestinal motility, colonic LMMP neurons, and LMMP Myosin Va in IBS-D rats and their co-localization with inhibitory neurotransmitter-related proteins. The results indicated that PA treatment could alleviate IBS-D symptoms, regulate the abnormal expression of LMMP neurons, increase Myosin Va expression, up-regulate co-localization levels of Myosin Va with neuronal nitric oxide synthase (nNOS), and promote co-localization levels of Myosin Va with vasoactive intestinal polypeptide (VIP). In conclusion, this study demonstrated the neuropathic alterations in the colon of chronic restraint stress-induced IBS-D rat model. PA reversed the neuropathological alteration by affecting the transport process of nNOS and VIP vesicles via Myosin Va and the function of LMMP inhibitory neurons, and these effects were related to the mechanism of enteric nervous system (ENS) remodeling.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Modelos Animais de Doenças , Diarreia/tratamento farmacológico , Diarreia/etiologia , Diarreia/metabolismo , Neurônios/metabolismo , Adaptação Fisiológica , Miosinas
17.
Phytomedicine ; 106: 154427, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36088791

RESUMO

BACKGROUND: Liver dysfunction and liver failure are serious complications of sepsis, directly leading to septic progression and death. Now, there is no specific therapeutics available for sepsis-related liver dysfunction. Prim-O-glucosylcimifugin (POG), a chromone richest in the roots of Saposhnikovia divaricata (Turcz.) Schischk, is usually used to treat headache, rheumatoid arthritis and tetanus. While, the underlying mechanisms of POG against sepsis-induced liver damage and dysfunction are still not clear. PURPOSE: To study the anti-sepsis effect of POG, and its pharmacological mechanism to protect liver injury by weakening the function of macrophages in septic livers through inhibiting NOD-like receptor protein 3 (NLRP3) inflammasome pathway. METHOD: In vivo experiments, septic mouse model was induced by cecal ligation and puncture (CLP), and then the mortality was detected, liver inflammatory damages and plasma biomarkers of liver injury were evaluated by histopathological staining and biochemical assays, respectively. In vitro experiments, mouse primary peritoneal macrophages were treated with lipopolysaccharide (LPS) and ATP, and then the activated-inflammasomes, macrophage migration and polarization were detected by ASC immunofluorescence staining, transwell and flow cytometry assays, respectively. NLRP3 inflammasome components NLRP3, caspase-1, IL-1ß and IL-18 protein expressions were detected using western blot assays, and the contents of IL-1ß and IL-18 were measured by ELISA assays. RESULTS: POG treatment significantly decreased the mortality, liver inflammatory damages, hepatocyte apoptosis and plasma biomarkers of liver injury in CLP-challenged male WT mice, which were comparable to those in ibuprofen (a putative anti-inflammatory drug)-supplemented septic male WT mice and septic NLRP3 deficient-male mice. POG supplementation significantly suppressed NLRP3 inflammasome activation in septic liver tissues and cultured macrophages, by significantly reducing NLRP3, cleaved-caspase-1, IL-1ß and IL-18 levels, the activated-inflammasome ASC specks, and macrophage infiltration and migration, as well as M1-like polarization, but significantly increasing M2-like polarization. These findings were similar to the pharmacological effects of ibuprofen, NLRP3 deficiency, and a special NLRP3 inhibitor, MCC950. CONCLUSION: POG protected against sepsis by inhibiting NLRP3 inflammasome-mediated macrophage activation in septic liver and attenuating liver inflammatory injury, indicating that it may be a potential anti-sepsis drug candidate.


Assuntos
Inflamassomos , Sepse , Trifosfato de Adenosina , Animais , Caspase 1/metabolismo , Cromonas , Ibuprofeno , Interleucina-18 , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3348-3360, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851129

RESUMO

This study aimed to explore the action targets and mechanisms of Polygala tenuifolia and Acorus tatarinowii in treating Alzheimer's disease(AD) based on network pharmacology, molecular docking, and animal tests. The AD-related targets were collec-ted from GeneCard and the main active ingredients and targets of P. tenuifolia and A. tatarinowii from the TCMSP. Cytoscape was applied to construct the "Chinese herb-active ingredient-target-disease" network, followed by the construction of protein-protein interaction(PPI) network using STRING. GO biological function and KEGG pathway enrichment analysis was performed by DAVID and Metascape. The main active components of P. tenuifolia and A. tatarinowii and their potential core targets were docking using AutoDock Vina. The effects of P. tenuifolia and A. tatarinowii on the cognitive function were verified in mice with scopolamine(SCOP)-induced cognitive impairment. A total of seven active ingredients including kaempferol, onjixanthone Ⅰ, and marmesin and 56 potential targets of P. tenuifolia and A. tatarinowii were screened out, with the core targets covering AKT1, PTGS2, TNF, and NF-κB inflammation pathway mainly involved. The results of molecular docking also showed that the main active components of P. tenuifolia and A. tatarinowii stably bond to the core targets predicted by network pharmacology. The new object recognition experiment suggested that P. tenuifolia and A. tatarinowii improved the learning and memory abilities of mice after SCOP induction. As revealed by pathological section observation and relevant kit assay, P. tenuifolia and A. tatarinowii reduced the damage of central cholinergic neurons and enhanced the antioxidant ability of SCOP-induced mice. Western blot confirmed that P. tenuifolia and A. tatarinowii down-regulated the protein expression levels of TLR4, NF-κB, and related inflammatory factors(TNF-α, IL-1ß, and IL-6). All these have suggested that P. tenuifolia and A. tatarinowii inhibits AD via multiple components, multiple targets, and multiple pathways, which has provided an experimental basis for the clinical application of P. tenuifolia and A. tatarinowii for the treatment of AD.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Doença de Alzheimer/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/genética , Farmacologia em Rede
19.
Artigo em Inglês | MEDLINE | ID: mdl-35586691

RESUMO

Objective: To investigate the effects of alteplase thrombolysis on coagulation function and nerve function of patients with ischemic stroke. Methods: 76 cases with ischemic stroke receiving thrombolytic therapy in Cangzhou Central Hospital from November 2018 to November 2019 were recruited. They were assigned via the random number table method at a ratio of 1 : 1 to receive alteplase thrombolysis either within 3h after the onset (observation group) or within 3-4.5 h after the onset (control group), followed by aspirin administration after no bleeding in cranial computed tomography (CT). Outcome measures included plasma fibrinogen (FIB), activated partial prothrombin time (APTT), platelet (PLT) levels, the National Institute of Health stroke scale (NIHSS) score, and adverse events. Results: Alteplase thrombolysis within 3 h was associated with better prothrombin time (PT), APTT, FIB, and PLT levels versus thrombolysis within 3-4.5 h (P < 0.05). Thrombolysis within 3 h showed significantly lower NIHSS scores versus within 3-4.5 h (P < 0.05). The two groups showed a similar incidence of adverse events (X 2 = 2.963, P=0.615). Conclusion: Alteplase thrombolysis showed benefits in mitigating the coagulation function and nerve function damage of patients with ischemic stroke, especially within 3 hours after the onset, with a high safety profile.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35356237

RESUMO

Objectives: To study whether moxibustion can improve the learning and memory ability of APP/PS1 mice by reducing the pathological products Aß and Tau protein via decreasing N6-methyladenosine (m6A). Methods: APP/PS1 mice were randomly divided into model group (APP/PS1) and moxibustion group (APP/PS1+Mox). C57BL/6J mice were used as a control group (Control). Learning and memory abilities were assessed by the Morris water maze. Aß, Tau, phosphorylated Tau (p-Tau), and YTHDF1 proteins were detected in the mouse cortex and hippocampus by immunofluorescence and western blot. Altered m6A expression levels in hippocampal and cortical tissues were measured with the m6A RNA methylation quantification assay kit. RNA transcript levels of YTHDF1, METTL3, and FTO in the hippocampus and cortex were measured by q-PCR. Results: Moxibustion shortened the escape latency, increased the number of platform crossings, and increased the percentage of swimming time in the target quadrant of APP/PS1 mice. Meanwhile, moxibustion reduced the levels of Aß, Tau, and p-Tau proteins both in the hippocampal and cortical regions of APP/PS1 mice. In addition, the total amount of m6A in the hippocampal and cortical regions of APP/PS1 mice was significantly reduced after moxibustion. The expression of YTHDF1 in the hippocampal region of APP/PS1 mice increased and that in the cortical region decreased after moxibustion treatment. Conclusion: Moxibustion improves the learning and memory abilities and reduces the deposition of Aß and Tau protein pathological products in APP/PS1 mice. This may be related to the fact that moxibustion reduces the total amount of m6A and inhibits its binding enzyme YTHDF1 in the hippocampus and cortex of APP/PS1 mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA