Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(7): e0018722, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736133

RESUMO

Staphylococcus aureus is a common cause of severe infections, and its widespread antibiotic resistance necessitates search for alternative therapies, such as inhibition of virulence. As S. aureus produces multiple individual virulence factors, inhibition of an entire regulatory system might provide better effects than targeting each virulence factor separately. Herein, we describe two novel inhibitors of S. aureus two-component regulatory system ArlRS: 3,4'-dimethoxyflavone and homopterocarpin. Unlike other putative ArlRS inhibitors previously identified, these two compounds were effective and specific. In vitro kinase assays indicated that 3,4'-dimethoxyflavone directly inhibits ArlS autophosphorylation, while homopterocarpin did not exhibit such effect, suggesting that two inhibitors work through distinct mechanisms. Application of the inhibitors to methicillin-resistant S. aureus (MRSA) in vitro blocked ArlRS signaling, inducing an abnormal gene expression pattern that was reflected in changes at the protein level, enhanced sensitivity to oxacillin, and led to the loss of numerous cellular virulence traits, including the ability to clump, adhere to host ligands, and evade innate immunity. The pleiotropic antivirulence effect of inhibiting a single regulatory system resulted in a marked therapeutic potential, demonstrated by the ability of inhibitors to decrease severity of MRSA infection in mice. Altogether, this study demonstrated the feasibility of ArlRS inhibition as anti-S. aureus treatment, and identified new lead compounds for therapeutic development.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Proteínas Quinases/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Front Pharmacol ; 12: 640179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262448

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) represents one of the most serious infectious disease concerns worldwide, with the CDC labeling it a "serious threat" in 2019. The current arsenal of antibiotics works by targeting bacterial growth and survival, which exerts great selective pressure for the development of resistance. The development of novel anti-infectives that inhibit quorum sensing and thus virulence in MRSA has been recurrently proposed as a promising therapeutic approach. In a follow-up of a study examining the MRSA quorum sensing inhibitory activity of extracts of Italian plants used in local traditional medicine, 224C-F2 was reported as a bioactive fraction of a Castanea sativa (European chestnut) leaf extract. The fraction demonstrated high activity in vitro and effective attenuation of MRSA pathogenicity in a mouse model of skin infection. Through further bioassay-guided fractionation using reverse-phase high performance liquid chromatography, a novel hydroperoxy cycloartane triterpenoid, castaneroxy A (1), was isolated. Its structure was established by nuclear magnetic resonance, mass spectrometry and X-ray diffraction analyses. Isomers of 1 were also detected in an adjacent fraction. In a series of assays assessing inhibition of markers of MRSA virulence, 1 exerted activities in the low micromolar range. It inhibited agr::P3 activation (IC50 = 31.72 µM), δ-toxin production (IC50 = 31.72 µM in NRS385), supernatant cytotoxicity to HaCaT human keratinocytes (IC50 = 7.93 µM in NRS385), and rabbit erythrocyte hemolytic activity (IC50 = 7.93 µM in LAC). Compound 1 did not inhibit biofilm production, and at high concentrations it exerted cytotoxicity against human keratinocytes greater than that of 224C-F2. Finally, 1 reduced dermonecrosis in a murine model of MRSA infection. The results establish 1 as a promising antivirulence candidate for development against MRSA.

3.
Sci Rep ; 10(1): 8046, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415287

RESUMO

Staphylococcus aureus relies on quorum sensing to exert virulence to establish and maintain infection. Prior research demonstrated the potent quorum sensing inhibition effects of "430D-F5", a refined extract derived from the fruits of Schinus terebinthifolia, a medicinal plant used for the traditional treatment of skin and soft tissue infections. We report the isolation and identification of three compounds from 430D-F5 that reduce virulence and abate dermonecrosis: 3-oxo-olean-12-en-28-oic acid (1), 3-oxotirucalla-7,24Z-dien-26-oic acid (2) and 3α-hydroxytirucalla-7,24 Z-dien-27-oic acid (3). Each compound inhibits all S. aureus accessory gene regulator (agr) alleles (IC50 2-70 µM). Dose-dependent responses were also observed in agr-regulated reporters for leucocidin A (lukA, IC50 0.4-25 µM) and glycerol ester hydrolase or lipase (gehB, IC50 1.5-25 µM). Surprisingly, dose-dependent activity against the nuclease reporter (nuc), which is under the control of the sae two-component system, was also observed (IC50 0.4-12.5 µM). Compounds 1-3 exhibited little to no effect on the agr-independent mgrA P2 reporter (a constitutive promoter from the mgrA two-component system) and the esxA reporter (under control of mgrA). Compounds 1-3 inhibited δ-toxin production in vitro and reduced dermonecrosis in a murine in vivo model. This is the first report of triterpenoid acids with potent anti-virulence effects against S. aureus.


Assuntos
Anacardiaceae/química , Antibacterianos/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Triterpenos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Staphylococcus aureus/patogenicidade , Triterpenos/química , Triterpenos/isolamento & purificação , Virulência/efeitos dos fármacos
4.
Cell Rep ; 27(1): 187-198.e6, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943400

RESUMO

Recurrent epidemics of drug-resistant Staphylococcus aureus illustrate the rapid lapse of antibiotic efficacy following clinical implementation. Over the last decade, community-associated methicillin-resistant S. aureus (MRSA) has emerged as a dominant cause of infections, and this problem is amplified by the hyper-virulent nature of these isolates. Herein, we report the discovery of a fungal metabolite, apicidin, as an innovative means to counter both resistance and virulence. Owing to its breadth and specificity as a quorum-sensing inhibitor, apicidin antagonizes all MRSA agr systems in a non-biocidal manner. In skin challenge experiments, the apicidin-mediated abatement of MRSA pathogenesis corresponds with quorum-sensing inhibition at in vivo sites of infection. Additionally, we show that apicidin attenuates MRSA-induced disease by potentiating innate effector responses, particularly through enhanced neutrophil accumulation and function at cutaneous challenge sites. Together, these results indicate that apicidin treatment represents a strategy to limit MRSA virulence and promote host defense.


Assuntos
Imunidade Inata/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Peptídeos Cíclicos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções Estafilocócicas/imunologia , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Feminino , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Coelhos , Infecções Estafilocócicas/microbiologia , Virulência/efeitos dos fármacos
5.
Sci Rep ; 7: 42275, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186134

RESUMO

Widespread antibiotic resistance is on the rise and current therapies are becoming increasingly limited in both scope and efficacy. Methicillin-resistant Staphylococcus aureus (MRSA) represents a major contributor to this trend. Quorum sensing controlled virulence factors include secreted toxins responsible for extensive damage to host tissues and evasion of the immune system response; they are major contributors to morbidity and mortality. Investigation of botanical folk medicines for wounds and infections led us to study Schinus terebinthifolia (Brazilian Peppertree) as a potential source of virulence inhibitors. Here, we report the inhibitory activity of a flavone rich extract "430D-F5" against all S. aureus accessory gene regulator (agr) alleles in the absence of growth inhibition. Evidence for this activity is supported by its agr-quenching activity (IC50 2-32 µg mL-1) in transcriptional reporters, direct protein outputs (α-hemolysin and δ-toxin), and an in vivo skin challenge model. Importantly, 430D-F5 was well tolerated by human keratinocytes in cell culture and mouse skin in vivo; it also demonstrated significant reduction in dermonecrosis following skin challenge with a virulent strain of MRSA. This study provides an explanation for the anti-infective activity of peppertree remedies and yields insight into the potential utility of non-biocide virulence inhibitors in treating skin infections.


Assuntos
Anacardiaceae/química , Percepção de Quorum , Dermatopatias/patologia , Alelos , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas Hemolisinas/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Microbiota , Necrose , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Percepção de Quorum/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Dermatopatias/microbiologia , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/patologia , Toxinas Biológicas/química , Toxinas Biológicas/toxicidade , Virulência/efeitos dos fármacos
6.
PLoS One ; 10(8): e0136486, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295163

RESUMO

The Mediterranean is home to a rich history of medical traditions that have developed under the influence of diverse cultures over millennia. Today, many such traditions are still alive in the folk medical practices of local people. Investigation of botanical folk medicines used in the treatment of skin and soft tissue infections led us to study Castanea sativa (European Chestnut) for its potential antibacterial activity. Here, we report the quorum sensing inhibitory activity of refined and chemically characterized European Chestnut leaf extracts, rich in oleanene and ursene derivatives (pentacyclic triterpenes), against all Staphylococcus aureus accessory gene regulator (agr) alleles. We present layers of evidence of agr blocking activity (IC50 1.56-25 µg mL-1), as measured in toxin outputs, reporter assays hemolytic activity, cytotoxicity studies, and an in vivo abscess model. We demonstrate the extract's lack of cytotoxicity to human keratinocytes and murine skin, as well as lack of growth inhibitory activity against S. aureus and a panel of skin commensals. Lastly, we demonstrate that serial passaging of the extract does not result in acquisition of resistance to the quorum quenching composition. In conclusion, through disruption of quorum sensing in the absence of growth inhibition, this study provides insight into the role that non-biocide inhibitors of virulence may play in future antibiotic therapies.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Fagaceae/química , Ácido Oleanólico/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Animais , Antibacterianos/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/biossíntese , Linhagem Celular , Células Cultivadas , Farmacorresistência Bacteriana , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/biossíntese , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Ácido Oleanólico/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/química , Coelhos , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Virulência/efeitos dos fármacos
7.
Antimicrob Agents Chemother ; 57(3): 1447-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23295925

RESUMO

Staphylococcus aureus is the most common cause of endovascular infections, including catheter sepsis and infective endocarditis (IE). Vancomycin (VAN) is the primary choice for treatment of methicillin-resistant S. aureus (MRSA) infections. However, high rates of VAN treatment failure in MRSA infections caused by VAN-susceptible strains have been increasingly reported. Biofilm-associated MRSA infections are especially prone to clinical antibiotic failure. The present studies examined potential relationships between MRSA susceptibility to VAN in biofilms in vitro and nonsusceptibility to VAN in endovascular infection in vivo. Using 10 "VAN-susceptible" MRSA bloodstream isolates previously investigated for VAN responsiveness in experimental IE, we studied the mechanism(s) of such in vivo VAN resistance, including: (i) VAN binding to MRSA organisms; (ii) the impact of VAN on biofilm formation and biofilm composition; (iii) VAN efficacy in an in vitro catheter-related biofilm model; (iv) effects on cell wall thickness. As a group, the five strains previously categorized as VAN nonresponders (non-Rsp) in the experimental IE model differed from the five responders (Rsp) in terms of lower VAN binding, increased biofilm formation, higher survival in the presence of VAN within biofilms in the presence or absence of catheters, and greater biofilm reduction upon proteinase K treatment. Interestingly, sub-MICs of VAN significantly promoted biofilm formation only in the non-Rsp isolates. Cell wall thickness was similar among all MRSA strains. These results suggest that sublethal VAN levels that induce biofilm formation and reduce efficacy of VAN in the in vitro catheter-associated biofilms may contribute to suboptimal treatment outcomes for endovascular infections caused by "VAN-susceptible" MRSA strains.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Modelos Biológicos , Vancomicina/farmacologia , Antibacterianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/complicações , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Endocardite Bacteriana/complicações , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/microbiologia , Endopeptidase K/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Vancomicina/metabolismo , Resistência a Vancomicina/efeitos dos fármacos
8.
Planta Med ; 78(14): 1556-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22814821

RESUMO

The popular herbal remedy goldenseal (Hydrastis canadensis L.) is traditionally used to treat skin infections. With this study, we show activity of H. canadensis extracts in vitro against methicillin-resistant Staphylococcus aureus (MRSA). An extract from H. canadensis leaves demonstrated more potent antimicrobial activity than the alkaloid berberine alone (MICs of 75 µg/mL and 150 µg/mL, respectively). LC-MS detected alkaloids and efflux-pump inhibitory flavonoids in the extract, and the latter may explain the enhanced efficacy of the extract compared to berberine alone. We also show evidence of anti-virulence activity as a second mechanism by which H. canadensis acts against S. aureus. The H. canadensis leaf extract (but not the isolated alkaloids berberine, hydrastine, and canadine) demonstrated quorum quenching activity against several clinically relevant MRSA isolates (USA300 strains). Our data suggest that this occurs by attenuation of signal transduction through the AgrCA two-component system. Consistent with this observation, the extract inhibited toxin production by MRSA and prevented damage by MRSA to keratinocyte cells in vitro. Collectively, our results show that H. canadensis leaf extracts possess a mixture of constituents that act against MRSA via several different mechanisms. These findings lend support for the traditional application of crude H. canadensis extracts in the prevention of infection.


Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Hydrastis/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Berberina/química , Berberina/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA