Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446924

RESUMO

Atlantic sea cucumber is a benthic marine echinoderm found in Northwest Atlantic waters and is harvested mainly for its body wall. The body wall, along with internal organs and aquaphyrangeal bulb/flower, is a rich source of proteins, where the latter parts are often considered as processing discards. The objective of this research was to produce protein hydrolysates from sea cucumber tissues (body wall, flower, and internal organs) with bioactive properties associated with antioxidants, DNA and LDL cholesterol oxidation inhibition, and angiotensin-I-converting enzyme (ACE) inhibitory effects. The protein hydrolysates were prepared using food-grade commercial enzymes, namely Alcalase, Corolase, and Flavourzyme, individually and in combination, and found that the combination of enzymes exhibited stronger antioxidant potential than the individual enzymes, as well as their untreated counterparts. Similar trends were also observed for the DNA and LDL cholesterol oxidation inhibition and ACE-inhibitory properties of sea cucumber protein hydrolysates, mainly those that were prepared from the flower. Thus, the findings of this study revealed potential applications of sea cucumber-derived protein hydrolysates in functional foods, nutraceuticals, and dietary supplements, as well as natural therapeutics.


Assuntos
Cucumaria , Pepinos-do-Mar , Animais , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pepinos-do-Mar/metabolismo , Hidrolisados de Proteína/farmacologia , LDL-Colesterol , Peptidil Dipeptidase A/metabolismo
2.
Mar Drugs ; 20(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005524

RESUMO

Sea cucumbers are considered a luxury food item and used locally in traditional medication due to their impressive nutritional profile and curative effects. Sea cucumbers contain a wide range of bioactive compounds, namely phenolics, polysaccharides, proteins (collagen and peptides), carotenoids, and saponins, demonstrating strong antioxidant and other activities. In particular, phenolic compounds, mainly phenolic acids and flavonoids, are abundant in this marine invertebrate and exhibit antioxidant activity. Protein hydrolysates and peptides obtained from sea cucumbers exhibit antioxidant potential, mainly dependent on the amino acid compositions and sequences as well as molecular weight, displayed for those of ≤20 kDa. Moreover, the antioxidant activity of sea cucumber polysaccharides, including fucosylated chondroitin sulfate and fucan, is a combination of numerous factors and is mostly associated with molecular weight, degree of sulfation, and type of major sugars. However, the activity of these bioactive compounds typically depends on the sea cucumber species, harvesting location, food habit, body part, and processing methods employed. This review summarizes the antioxidant activity of bioactive compounds obtained from sea cucumbers and their by-products for the first time. The mechanism of actions, chemical structures, and factors affecting the antioxidant activity are also discussed, along with the associated health benefits.


Assuntos
Saponinas , Pepinos-do-Mar , Animais , Antioxidantes/farmacologia , Humanos , Invertebrados , Polissacarídeos/química , Saponinas/química , Pepinos-do-Mar/química
3.
J Agric Food Chem ; 70(11): 3489-3501, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35286101

RESUMO

Sea cucumber contains a wide range of bioactive compounds, including phenolics. This study investigated the free, esterified, and insoluble-bound phenolics of sea cucumber body wall as affected by high-pressure processing (HPP) pretreatment. Sea cucumber body wall was subjected to HPP (200, 400, and 600 MPa for 5, 10, and 15 min), followed by the extraction of phenolics. The contents of total phenolics and antioxidant activity were monitored. Compared to untreated samples, those treated with HPP exhibited significantly higher total phenolics, flavonoids, and antioxidant activities. Treatment of 600 MPa for 10 min offered the optimal results. The highest amount of phenolics was observed in the free phenolic fraction, followed by esterified and insoluble-bound phenolic fractions. Moreover, phenolic extracts showed inhibitory effects against cupric ion-induced low-density lipoprotein (LDL)-cholesterol oxidation, peroxyl and hydroxyl radical-induced DNA scission, α-glucosidase activity, and formation of advanced glycation end products (AGEs). Ultra-high-performance liquid chromatography equipped with a quadrupole time of fight and mass spectrometer (UHPLC-QTOF-MS/MS) identified 20 phenolic compounds, mainly phenolic acids and flavonoids, from the body wall of this species for the first time. Thus, sea cucumber may lead to the production of a multitude of value-added products.


Assuntos
Cucumaria , Cucumis sativus , Pepinos-do-Mar , Animais , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Espectrometria de Massas em Tandem
4.
Int J Med Mushrooms ; 23(5): 1-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347990

RESUMO

Since December 2019, a de novo pattern of pneumonia, later named coronavirus disease 2019 (COVID-19), has caused grave upset throughout the global population. COVID-19 is associated with several comorbidities; thus, preventive and therapeutic strategies targeting those comorbidities along with the causative agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), seem imperative. In this state-of-the-art review, edible and medicinal mushrooms are featured in the treatment of SARS-CoV-2, COVID-19 pathomanifestations, and comorbid issues. Because this is not an original research article, we admit our shortcomings in inferences. Yet we are hopeful that mushroom-based therapeutic approaches can be used to achieve a COVID-free world. Among various mushroom species, reishi or lingzhi (Ganoderma lucidum) seem most suitable as anti-COVID agents for the global population.


Assuntos
Agaricales/química , Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Antivirais/administração & dosagem , Produtos Biológicos/administração & dosagem , COVID-19/imunologia , COVID-19/fisiopatologia , Síndrome da Liberação de Citocina/prevenção & controle , Síndrome da Liberação de Citocina/terapia , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/uso terapêutico , Camundongos , Reishi/química , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
5.
Mar Drugs ; 18(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455954

RESUMO

Sea cucumber (Cucumaria frondosa) is the most abundant and widely distributed species in the cold waters of North Atlantic Ocean. C. frondosa contains a wide range of bioactive compounds, mainly collagen, cerebrosides, glycosaminoglycan, chondroitin sulfate, saponins, phenols, and mucopolysaccharides, which demonstrate unique biological and pharmacological properties. In particular, the body wall of this marine invertebrate is the major edible part and contains most of the active constituents, mainly polysaccharides and collagen, which exhibit numerous biological activities, including anticancer, anti-hypertensive, anti-angiogenic, anti-inflammatory, antidiabetic, anti-coagulation, antimicrobial, antioxidation, and anti- osteoclastogenic properties. In particular, triterpene glycosides (frondoside A and other) are the most researched group of compounds due to their potential anticancer activity. This review summarizes the latest information on C. frondosa, mainly geographical distribution, landings specific to Canadian coastlines, processing, commercial products, trade market, bioactive compounds, and potential health benefits in the context of functional foods and nutraceuticals.


Assuntos
Suplementos Nutricionais , Alimento Funcional , Preparações Farmacêuticas , Pepinos-do-Mar , Animais , Oceanos e Mares
6.
Exp Brain Res ; 219(2): 293-304, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22526948

RESUMO

The present study investigated how the involvement and direction of trunk movement during reach-to-grasp movements affect the coordination between the transport and grasping components. Seated young adults made prehensile movements in which the involvement of the trunk was varied; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane during the reach to the object. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. Regarding the relationship between the trunk and arm motion for arm transport, the onset of wrist motion relative to that of the trunk was delayed to a greater extent for the trunk extension than for the trunk flexion. The variability of the time period from the peak of wrist velocity to the peak of trunk velocity was also significantly greater for trunk extension compared to trunk flexion. These findings indicate that trunk flexion was better integrated into the control of wrist transport than trunk extension. In terms of the temporal relationship between wrist transport and grip aperture, the relationship between the time of peak wrist velocity and the time of peak grip aperture did not change or become less steady across conditions. Therefore, the stability of temporal coordination between wrist transport and grip aperture was maintained despite the variation of the pattern of intersegmental coordination between the arm and the trunk during arm transport. The transport-aperture coordination was further assessed in terms of the control law according to which the initiation of aperture closure during the reach occurs when the hand crosses a hand-to-target distance threshold for grasp initiation, which is a function of peak aperture, wrist velocity and acceleration, trunk velocity and acceleration, and trunk-to-target distance at the time of aperture closure initiation. The participants increased the hand-to-target distance threshold for grasp initiation in the conditions where the trunk was involved compared to the conditions where the trunk was not involved. An increase also occurred when the trunk was extended compared to when it was flexed. The increased distance threshold implies an increase in the hand-to-target distance-related safety margin for grasping when the trunk is involved, especially when it is extended. These results suggest that the CNS significantly utilizes the parameters of trunk movement together with movement parameters related to the arm and the hand for controlling grasp initiation.


Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Amplitude de Movimento Articular/fisiologia , Estimulação Acústica/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA