Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30945985

RESUMO

Consumption and exploitation of crocodiles have been rampant for their exotic, nutritive and medicinal attributes. These depredations are alarming and although they have continued to be monitored by wildlife and conservation agencies, unlawful trading of crocodiles shows an increasing trend worldwide. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays for crocodile have been documented but they are only suitable for identification and cannot quantify adulterations. We described here a quantitative duplex real-time PCR assay with probes to quantify contributions from Crocodylus porosus materials simultaneously. A very short amplicon size of 127bp was used because longer targets could have been broken down in samples, bringing considerable uncertainty in molecular analysis. We have validated a TaqMan probe-based duplex real-time PCR (qPCR) assay for the detection of 0.004 ng DNA in pure state and 0.1% target meat in model chicken meatball. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 12 model chicken meatballs adulterated with C. porosus reflected 96.3-120.2% target recovery at 0.1-10% adulterations. A validation test of 21 commercial food and traditional medicine (TM) crocodile-based products showed 100% effectiveness. Short amplicon sizes, alternative complementary target, exceptional stability and superior sensitivity suggested the assay could be used for the identification and quantitative determination of C. porosus in any food or TM samples even under degraded conditions.


Assuntos
Jacarés e Crocodilos/genética , Sondas de DNA/genética , Contaminação de Alimentos/análise , Abastecimento de Alimentos , Medicina Tradicional , Reação em Cadeia da Polimerase em Tempo Real , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-27643977

RESUMO

The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.


Assuntos
Medicamentos de Ervas Chinesas/química , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Produtos da Carne/análise , Compostos Orgânicos/análise , Reação em Cadeia da Polimerase em Tempo Real , Tartarugas , Animais , Benzotiazóis , China , DNA/análise , DNA/genética , Diaminas , Pós/análise , Quinolinas , Tartarugas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA