Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16754, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313137

RESUMO

Lasia spinosa (L.) Thw. (L. spinosa) is widely used as a folk remedy for different physical ailments, and its neurological effects have yet to be assessed. Phytochemicals status of L. spinosa was evaluated by GC-MS analysis. Membrane stabilization test, elevated plus maze (EPM) tests and hole board tests (HBT), tail suspension tests (TST) and thiopental sodium-induced sleeping tests (TISTT) were used to assess anti-inflammatory, anxiolytic and anti-depressant activity. Fourteen compounds have been recorded from GC-MS analysis. The LSCTF showed 68.66 ± 2.46% hemolysis protections (p < 0.05) at 500 µg/mL, whereas LSCHF and LSNHF demonstrated efficiency rates of 68.6 ± 1.46% and 52.46 ± 5.28%, respectively. During EPM tests, LSNHF and LSCTF significantly (p < 0.001) increased the time spent in the open arm (59.88 ± 0.65 s and 50.77 ± 0.67 s, respectively) at the dosages of 400 mg/kg. In HBT, samples exhibited dose-dependent anxiolytic activity. LSNHF and LSCTF showed a significant (p < 0.001) hole poking tendency and a high number of head dips (78.66 ± 1.05 and 65.17 ± 0.96, respectively) at the higher dose. In TST, at 400 mg/kg dose demonstrated significantly (p < 0.001) smaller amounts of time immobile, at 81.33 ± 1.67 s and 83.50 ± 1.90 s, respectively, compared to the control group. A consistent finding was also observed in TISTT. The computer-assisted studies on the identified compounds strongly support the aforementioned biological activities, indicating that L. spinosa has potential as a source of medication for treating neuropsychiatric and inflammatory diseases.

2.
Crit Rev Food Sci Nutr ; 63(22): 5546-5576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34955042

RESUMO

Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.


Assuntos
Alcaloides , Plantas Medicinais , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Fatores Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Imunidade
3.
J Cell Mol Med ; 26(12): 3343-3363, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502486

RESUMO

Since ancient times, plants have been used as green bioresources to ensure a healthier life by recovering from different diseases. Kattosh (Lasia spinosa L. Thwaites) is a local plant with various traditional uses, especially for arthritis, constipation and coughs. This research investigated the effect of Kattosh stem extract (LSES) on streptozotocin-induced damage to the pancreas, kidney, and liver using in vitro, in vivo and in silico methods. In vitro phytochemical, antioxidative and anti-inflammatory effects of LSES were accomplished by established methods followed by antidiabetic actions in in vivo randomized controlled intervention in STZ-induced animal models for four weeks. In an in silico study, LSES phytocompounds interacted with antidiabetic receptors of peroxisome proliferator-activated receptor-gamma (PPAR, PDB ID: 3G9E), AMP-activated protein kinase (AMPK, PDB ID: 4CFH) and α-amylase enzyme (PDB ID: 1PPI) to verify the in vivo results. In addition, LSES showed promising in vitro antioxidative and anti-inflammatory effects. In contrast, it showed a decrease in weekly blood glucose level, normalized lipid profile, ameliorated liver and cardiac markers, managed serum AST and ALT levels, and increased glucose tolerance ability in the animal model study. Restoration of pancreatic and kidney damage was reflected by improving histopathological images. In ligand-receptor interaction, ethyl α-d-glucopyranoside of Kattosh showed the highest affinity for the α-amylase enzyme, PPAR, and AMPK receptors. Results demonstrate that the affinity of Kattosh phytocompounds potentially attenuates pancreatic and kidney lesions and could be approached as an alternative antidiabetic source with further clarification.


Assuntos
PPAR gama , Extratos Vegetais , Proteínas Quinases Ativadas por AMP , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Rim/patologia , PPAR gama/metabolismo , Pâncreas/patologia , Extratos Vegetais/farmacologia , Estreptozocina/toxicidade , alfa-Amilases/farmacologia
4.
Biomed Pharmacother ; 143: 112215, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649346

RESUMO

Orchids are basically ornamental, and biological functions are seldom evaluated. This research investigated the effects of Acampe ochracea methanol extract (AOME) in ameliorating the paracetamol (PCM) induced liver injury in Wistar albino rats, evaluating its phytochemical status through UPLC-qTOF-MS analysis. With molecular docking and network pharmacology, virtual screening verified the inevitable interactions between the UPLC-qTOF-MS-characterized compounds and hepatoprotective drug receptors. The AOME has explicit a dose-dependent decrease of liver enzymes acid phosphatase (ACP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), total bilirubin, as well as an increase of serum total protein and antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH) with a virtual normalization (p < 0.05-p < 0.001) and the values were almost equivalent to the reference drug silymarin. After pretreatment with AOME, PCM-induced malondialdehyde (MDA) levels were considerably decreased (p < 0.001). Histopathological examinations corroborated the functional and biochemical findings. The AOME upregulated the genes involved in antioxidative (CAT, SOD, ß-actin, PON1, and PFK1) and hepatoprotective mechanisms in PCM intoxicated rats. An array of 103 compounds has been identified from AOME through UPLC-qTOF-MS analysis. The detected compounds were substantially related to the targets of several liver proteins and antioxidative enzymes, according to an in silico study. Virtual prediction by SwissADME and admetSAR showed that AOME has drug-like, non-toxic, and potential pharmacological activities in hepatic damage. Furthermore, VEGFA, CYP19A1, MAPK14, ESR1, and PPARG genes interact with target compounds impacting the significant biological actions to recover PCM-induced liver damage.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Orchidaceae , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Acetaminofen , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacocinética , Aromatase/genética , Aromatase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Masculino , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Orchidaceae/química , Estresse Oxidativo/genética , PPAR gama/genética , PPAR gama/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacocinética , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacocinética , Mapas de Interação de Proteínas , Ratos Wistar , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Biomed Pharmacother ; 135: 111211, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421733

RESUMO

Blumea lacera (Burm.f.) DC. is described as a valuable medicinal plant in various popular systems of medicine. The aim of the experiment reports the in vivo antiulcer activity of methanol extract of Blumea lacera (MEBLL) and in silico studies of bioactive constituents of MEBLL. In this study, fasted Long-Evans rat treated with 80 % ethanol (0.5 mL) to induce gastric ulcer, were pretreated orally with MEBLL at different doses (250 and 500 mg/kg, p.o., b.w) and omeprazole (20 mg/kg, p.o.) and distilled water were used as a reference drug and normal control respectively. In silico activity against gastric H+-K+ATPase enzyme was also studied. The findings demonstrated that the treatment with MEBLL attenuated markedly ulcer and protected the integrity of the gastric mucosa by preventing the mucosal ulceration altered biochemical parameters of gastric juice such total carbohydrate, total protein and pepsin activity. Additionally, the experimental groups significantly (p < 0.001) inhibited gastric lesions and malondealdehyde (MDA) levels and upregulated antioxidant enzymes level. Furthermore, nine compounds were documented as bioactive, displayed good binding affinities to against gastric H+-K+ATPase enzyme while these compounds illustrated inhibitory effect. From these studies, it is established MEBLL has ulcer healing property as unveiled by in vivo and in silico studies.


Assuntos
Antiulcerosos/farmacologia , Antioxidantes/farmacologia , Asteraceae , Mucosa Gástrica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Úlcera Gástrica/prevenção & controle , Animais , Antiulcerosos/isolamento & purificação , Antiulcerosos/farmacocinética , Antioxidantes/isolamento & purificação , Antioxidantes/farmacocinética , Asteraceae/química , Modelos Animais de Doenças , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacocinética , Folhas de Planta , Inibidores da Bomba de Prótons/isolamento & purificação , Inibidores da Bomba de Prótons/farmacocinética , Ratos Long-Evans , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA