Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Chemother ; 23(6): 354-359, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28385566

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a highly predominant malignancy affecting millions worldwide. Plants belonging to Loranthaceae family have remarkable chemopreventive properties. OBJECTIVE: The goal of the present study was to assess the antiproliferative and apoptosis-inducing effects of stem parts of Elytranthe parasitica (L.) Danser (EP) on colorectal cancer and identify the bioactive phytochemicals. MATERIAL AND METHODS: EP methanol extract (EP.M) and its subsequent fractions were screened for antiproliferative activity in human colorectal carcinoma HCT 116 cell line. Phytocomposition of the bioactive fraction was analyzed by GC-MS. Further, apoptotic induction and cell cycle arrest was assessed in the most bioactive fractions. RESULTS: EP.DEE (Diethyl Ether) fraction and a subsequent fraction derived by column chromatography, Fraction 3A (FR 3A) significantly inhibited the proliferation of HCT 116 cells (P < 0.05). FR 3A triggered apoptosis and notably modulated the cell cycle checkpoints. GC-MS analysis of FR 3A revealed the presence of 24 phytochemicals, the most prominent of which was pinocembrin (70.67%), a flavonoid. CONCLUSION: Hence, it could be speculated that pinocembrin and its related derivatives may be the chief phytochemicals involved in apoptosis - mediated cytotoxicity of the enriched fraction. Our findings indicate the enriched fraction is a promising candidate which could be developed into a natural chemotherapeutic product for colorectal cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Loranthaceae/química , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais , Flavanonas/química , Células HCT116 , Humanos , Extratos Vegetais/química
2.
Chem Biol Interact ; 244: 71-83, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26549477

RESUMO

A synthetic small molecule, 1-[(1H-indol-3-yl)methylene]-2-phenylhydrazine (HMPH) was conveniently synthesised by a one-step reaction, purified and characterised by chromatographic and spectroscopic methods. HMPH scavenged free radicals and inhibited lipopolysaccharide (LPS)-induced ROS generation and NO release in RAW-264.7 cells without signs of any detectable cytotoxicity. HMPH inhibited lipid peroxidation (LPO) with IC50 of 135 ± 9 as against 58 ± 8 µM for α-tocopherol. Further, HMPH (>50 µM) significantly reduced the LPS-induced TNF-α release in mouse peritoneal macrophages and in human peripheral blood mononuclear cells (PBMCs). HMPH did not show any visible signs of toxicity in rats up to 400 mg/kg/intraperitoneal and 2000 mg/kg/oral. HMPH at 25 and 50 mg/kg attenuated neutrophil infiltration in air-pouch lavage and bronchoalveolar lavage (BAL) in rat models. HMPH also reduced myeloperoxidase (MPO), nitrite and TNF-α in air-pouch lavage in addition to MPO in plasma. HMPH reduced acute paw-inflammation in carrageenan-induced paw-edema. HMPH consistently decreased both ipsilateral and contralateral paw inflammation, minimised the clinical scores of arthritis, prevented body weight (B.wt.) loss, attenuated serum C-reactive protein (C-RP) and rheumatoid factors (RF) in rat model of adjuvant-induced arthritis. Histopathology and radio-graphical reports show that HMPH reduced bone erosion in both ipsilateral and contralateral paw joints. Failure to inhibit COX suggests that effectiveness of HMPH in both acute and chronic inflammation is mediated by a multimodal mechanism involving modulation of immunity, attenuating TNF-α, protecting bone attrition and reducing oxidative stress.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Hidrazonas/farmacologia , Indóis/farmacologia , Inflamação/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Carragenina , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Indóis/síntese química , Indóis/química , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA