RESUMO
PURPOSE: Tumor-treating fields (TTFields) are an antimitotic treatment modality that interfere with glioblastoma (GBM) cell division and organelle assembly by delivering low-intensity, alternating electric fields to the tumor. A previous analysis from the pivotal EF-14 trial demonstrated a clear correlation between TTFields dose density at the tumor bed and survival in patients treated with TTFields. This study tests the hypothesis that the antimitotic effects of TTFields result in measurable changes in the location and patterns of progression of newly diagnosed GBM. METHODS AND MATERIALS: Magnetic resonance images of 428 newly diagnosed GBM patients who participated in the pivotal EF-14 trial were reviewed, and the rates at which distant progression occurred in the TTFields treatment and control arm were compared. Realistic head models of 252 TTFields-treated patients were created, and TTFields intensity distributions were calculated using a finite element method. The TTFields dose was calculated within regions of the tumor bed and normal brain, and its relationship with progression was determined. RESULTS: Distant progression was frequently observed in the TTFields-treated arm, and distant lesions in the TTFields-treated arm appeared at greater distances from the primary lesion than in the control arm. Distant progression correlated with improved clinical outcome in the TTFields patients, with no such correlation observed in the controls. Areas of normal brain that remained normal were exposed to higher TTFields doses compared with normal brain that subsequently exhibited neoplastic progression. Additionally, the average dose to areas of the enhancing tumor that returned to normal was significantly higher than in the areas of the normal brain that progressed to enhancing tumor. CONCLUSIONS: There was a direct correlation between TTFields dose distribution and tumor response, confirming the therapeutic activity of TTFields and the rationale for optimizing array placement to maximize the TTFields dose in areas at highest risk of progression, as well as array layout adaptation after progression.
Assuntos
Antimitóticos , Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Antimitóticos/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Terapia por Estimulação Elétrica/métodos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Humanos , Imageamento por Ressonância MagnéticaRESUMO
PURPOSE OF REVIEW: Glioblastoma (GBM) patients have a poor prognosis despite the use of modern synergistic multimodal treatment strategies, with a progression-free survival estimated at 7-8 months, a median survival of 14-16 months and 5-year overall survival of 9.8%. RECENT FINDINGS: Physical methods hold the promise to act synergistically with classical treatments to improve the outcome of GBM patients. Fluorescent guided surgery with 5-aminolevulinic acid and tumor-treating fields therapy have already shown positive results in randomized phase III trials and have been incorporated in the standard management. Other techniques such as photodynamic therapy (PDT) and focused ultrasound, often combined whit microbubbles, are reaching clinical development. SUMMARY: Several clinical trials to evaluate the feasibility and efficacy of ultrasound devices to disrupt the blood-brain barrier are ongoing. PDT enables the creation of a safety margin or treatment of non-resecable tumors. However, randomized trials are urgently required to validate the efficacy of these promising approaches. We aim to critically review physical approaches to treat GBM, focusing on available clinical trial data.
Assuntos
Neoplasias Encefálicas/terapia , Terapia por Estimulação Elétrica/métodos , Glioblastoma/terapia , Animais , Ensaios Clínicos Fase III como Assunto , Humanos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Tumor treating fields (TTFields) are low-intensity electric fields alternating at an intermediate frequency (200kHz), which have been demonstrated to block cell division and interfere with organelle assembly. This novel treatment modality has shown promise in a variety of tumor types. It has been evaluated in randomized phase 3 trials in glioblastoma (GBM) and demonstrated to prolong progression-free survival (PFS) and overall survival (OS) when administered together with standard maintenance temozolomide (TMZ) chemotherapy in patients with newly diagnosed GBM. TTFields are continuously delivered by 4 transducer arrays consisting each of 9 insulated electrodes that are placed on the patient's shaved scalp and connected to a portable device. Here we summarize the preclinical data and mechanism of action, the available clinical data, and further outlook of this treatment modality in brain tumors and other cancer indications.
Assuntos
Neoplasias Encefálicas/terapia , Terapia por Estimulação Elétrica/métodos , Glioblastoma/terapia , Animais , Terapia por Estimulação Elétrica/tendências , HumanosRESUMO
IMPORTANCE: Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. OBJECTIVE: To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS: After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis. INTERVENTIONS: Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle. MAIN OUTCOMES AND MEASURES: The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up. RESULTS: The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004). CONCLUSIONS AND RELEVANCE: In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409.
Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/terapia , Dacarbazina/análogos & derivados , Terapia por Estimulação Elétrica/métodos , Glioblastoma/terapia , Quimioterapia de Manutenção/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Canadá , Carmustina/uso terapêutico , Quimiorradioterapia , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Dacarbazina/uso terapêutico , Progressão da Doença , Intervalo Livre de Doença , Término Precoce de Ensaios Clínicos , Terapia por Estimulação Elétrica/efeitos adversos , Europa (Continente) , Feminino , Glioblastoma/mortalidade , Humanos , Israel , Masculino , Pessoa de Meia-Idade , República da Coreia , Temozolomida , Estados Unidos , Adulto JovemRESUMO
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Standard therapeutic approaches provide modest improvement in the progression-free and overall survival, necessitating the investigation of novel therapies. We review the standard treatment options for GBM and evaluate the results obtained in clinical trials for promising novel approaches, including the inhibition of angiogenesis, targeted approaches against molecular pathways, immunotherapies, and local treatment with low voltage electric fields.