Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci China Life Sci ; 66(9): 2020-2040, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526911

RESUMO

The ionome is essential for maintaining body function and health status by participating in diverse key biological processes. Nevertheless, the distribution and utilization of ionome among different organs and how aging impacts the ionome leading to a decline in egg white quality remain unknown. Thus, we used inductively coupled plasma mass spectrometry (ICP-MS) to analyze 35 elements and their isotopic contents in eight organs of laying hens at 35, 72, and 100 weeks. Moreover, the magnum proteome, amino acids in egg white, and egg white quality were analyzed in laying hens at three different ages using 4D proteomics techniques, an amino acid analyzer, and an egg quality analyzer. Across the organs, we identified varying distribution patterns among macroelements (Mg24, Ca43/44, K39, and P31), transition metals (Zn64/66, Cu63/65, Fe56/57, and Mn55), and toxic elements (Pb208, Ba137, and Sr86). We observed an organ-specific aging pattern characterized by the accumulation of toxic elements (Pb208, Ba137, and Sr86) and calcification in the small intestine. Additionally, a decrease in the utilization of essential trace elements selenium (Se78/82) and manganese (Mn55) was noted in the oviduct. By analyzing ionome in tandem with egg quality, egg white amino acids, and proteome, we unveiled that the reduction of selenium and manganese concentrations in the magnum during the aging process affected amino acid metabolism, particularly tryptophan metabolism, thereby inhibiting the amino acid synthesis in the magnum. Furthermore, it accelerated the senescence of magnum cells through necroptosis activation, leading to a decline in the albumen secretion function of the magnum and subsequently reducing egg white quality. Overall, this study provides insights into the evolution of 35 elements and their isotopes across 8 organs of laying hens with age. It also reveals the elemental composition, interactions, and utilization patterns of these organs, as well as their correlation with egg white quality. The present study highlights the significance of ionome and offers a comprehensive perspective on the selection of ionome for regulating the aging of laying hens.


Assuntos
Clara de Ovo , Selênio , Animais , Feminino , Proteoma/metabolismo , Galinhas , Selênio/metabolismo , Manganês/metabolismo , Aminoácidos/metabolismo , Envelhecimento
2.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316264

RESUMO

Plantago asiatica L. is widely distributed in Eastern Asia and a commonly used drug in China, Korea, and Japan for diuretic and antiphlogistic purposes. In this experiment, the present study was performed to isolate antioxidant molecules based on the DPPH scavenging activity assay and discover the bioactive compounds which contributed to performing the function of Plantago asiatica L. Each faction was chosen for further isolation guided by DPPH scavenging activity assay. Afterwards, two potential bioactive molecules, aesculetin and apigenin, were isolated for in vitro antioxidant activity in cells. Hydrogen-peroxide-induced oxidative stress led to decreased cell viability, impaired intercellular junction, and damage to the cell membrane and DNA. Furthermore, aesculetin ameliorated decreased cell viability induced by hydrogen peroxide via upregulation of antioxidant related genes, and apigenin also protected against H2O2 mainly by improving the glutathione (GSH) antioxidant system, such as increasing the activity of glutathione peroxidase (GPX), glutathione reductase (GR), and the ration of GSH/glutathione disulfide (GSSG). Above all, these findings suggest that aesculetin and apigenin may be bioactive compounds for antioxidant function in Plantago asiatica L.


Assuntos
Antioxidantes/isolamento & purificação , Apigenina/farmacologia , Extratos Vegetais/análise , Plantago/química , Umbeliferonas/farmacologia , Antioxidantes/farmacologia , Apigenina/isolamento & purificação , Compostos de Bifenilo/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Picratos/química , Umbeliferonas/isolamento & purificação , Regulação para Cima
3.
Res Vet Sci ; 122: 15-21, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30447500

RESUMO

To explore the effects of reducing the Cp levels on intestinal barrier function, low Cp (LP) and NRC standard Cp (NP) diets were fed to pigs from 45 to 160 days, and in vitro experiments were performed using monolayers of IPEC-J2 cells. The number of goblet cells, expression of proteins related to cell junction, amino acid transport, glucose transport, transepithelial electrical resistance (TEER), dextran permeability, and IL-6 secretion level were detected in pigs. The results demonstrated that a moderate reduction of Cp levels did not affect intestinal morphology, as demonstrated by a normal villi height, crypt depth and normal numbers of goblet cells. The maintenance of the intestinal structure obtained with LP was also confirmed by stable mRNA expression levels of muc2 and E-cadherin in the jejunum. We also found that LP did not affect the protein expression of cationic amino acid transporter 1 (CAT-1) and alanine serine cysteine transporter 1 (ASCT1) from 45 to 160 days. Moreover, the excitatory amino acid transporter 3 (EAAT3), sodium-glucose cotransporter 1 (SGLT1) and glucose transporter (GLUT2) protein expression levels in the jejunum were significantly increased at a certain age during the rearing period. Furthermore, we also demonstrated that a reduction in protein concentration up to 15% in the cultural medium of IPEC-J2 cells did not impact the mucosal barrier function. This study demonstrated that a moderate reduction of the protein level did not affect intestinal mucosal barrier function and morphology in the jejunum.


Assuntos
Ração Animal/análise , Dieta/veterinária , Proteínas Alimentares/farmacologia , Intestinos/efeitos dos fármacos , Suínos/anatomia & histologia , Animais , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/anatomia & histologia , Intestinos/fisiologia , Transportador 1 de Glucose-Sódio/metabolismo , Suínos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA