Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611797

RESUMO

Vernonia patula Merr. (VP) is a traditional medicine used by the Zhuang and Yao people, known for its therapeutic properties in treating anemopyretic cold and other diseases. Distinguishing VP from similar varieties such as Praxelis clematidea (PC), Ageratum conyzoides L. (AC) and Ageratum houstonianum Mill (AH) was challenging due to their similar traits and plant morphology. The HPLC fingerprints of 40 batches of VP and three similar varieties were established. SPSS 20.0 and SIMCA-P 13.0 were used to statistically analyze the chromatographic peak areas of 37 components. The results showed that the similarity of the HPLC fingerprints for each of the four varieties was >0.9, while the similarity between the control chromatogram of VP and its similar varieties was <0.678. Cluster analysis and partial least squares discriminant analysis provided consistent results, indicating that all four varieties could be individually clustered together. Through further analysis, we found isochlorogenic acid A and isochlorogenic acid C were present only in the original VP, while preconene II was present in the three similar varieties of VP. These three components are expected to be identification points for accurately distinguishing VP from PC, AC and AH.


Assuntos
Ageratum , Vernonia , Humanos , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Análise Discriminante
2.
J Ethnopharmacol ; 325: 117825, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38296175

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a classic traditional Chinese medicine, Magnolia officinalis (M. officinalis) is widely used in digestive diseases. It has rich gastrointestinal activity including inflammatory bowel disease (IBD) treatment, but the mechanism is not clear. AIM OF THE STUDY: In recent years, there has been a growing interest in investigating the regulatory effects of herbal compounds on transient receptor potential (TRP) channel proteins. Transient receptor potential vanilloid 4 (TRPV4), a subtype involved in endothelial permeability regulation, was discussed as the target of M. officinalis in the treatment of IBD in the study. Based on the targeting effect of TRPV4, this study investigated the active ingredients and mechanism of M. officinalis extract in treating IBD. MATERIALS AND METHODS: To reveal the connection between the active ingredients in M. officinalis and TRPV4, a bioactivity-guided high performance liquid chromatography system coupled with mass spectrometry identification was utilized to screen for TRPV4 antagonists. TRPV4 siRNA knockdown experiment was employed to validate the significance of TRPV4 as a crucial target in regulating endothelial permeability by honokiol (HON). The interaction of the active ingredient representing HON with TRPV4 was confirmed by molecular docking, fluorescence-based thermal shift and live cell calcium imaging experiments. The potential binding sites and inhibitory mechanisms of HON in TRPV4 were analyzed by molecular dynamics simulation and microscale thermophoresis. The therapeutic effect of HON based on TRPV4 was discussed in DSS-IBD mice. RESULTS: Our finding elucidated that the inhibitory activity of M. officinalis against TRPV4 is primarily attributed to HON analogues. The knockdown of TRPV4 expression significantly impaired the calcium regulation and permeability protection in endothelial cells. The mechanism study revealed that HON specifically targets the Q239 residue located in the ankyrin repeat domain of TRPV4, and competitively inhibits channel opening with adenosine triphosphate (ATP) binding. The immunofluorescence assay demonstrated that the administration of HON enhances the expression and location of VE-Cadherin to protect the endothelial barrier and attenuates immune cell infiltration. CONCLUSIONS: The finding suggested that HON alleviates IBD by improving endothelial permeability through TRPV4. The discovery provides valuable insights into the potential therapeutic strategy of active natural products for alleviating IBD.


Assuntos
Compostos Alílicos , Repetição de Anquirina , Compostos de Bifenilo , Doenças Inflamatórias Intestinais , Fenóis , Camundongos , Animais , Células Endoteliais , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Permeabilidade
3.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4893-4901, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802831

RESUMO

Yiyi Fuzi Baijiang Powder(YFBP), originating from Synopsis of the Golden Chamber, is a classic prescription composed of Coicis Semen, Aconiti Lateralis Radix Praeparata, and Patriniae Herba for the treatment of abscesses and pus discharge. This article presented a systematic analysis of the clinical application of YFBP, including the indicated diseases, the number of cases, efficacy, dosage, administration methods, and compatibility with other drugs. The analysis reveals that YFBP has a wide range of clinical applications. It is commonly used, often with modifications or in combination with western medicine, for diseases in the fields of gastroente-rology, gynecology, urology, dermatology, and others. And most of the Traditional Chinese Medicine(TCM) evidence involved in these diseases are damp-heat evudence. The prescription shows rich variations in clinical administration methods, and most of which are the treatment of aqueous decoction of it. The therapeutic effect is also significant, and the total effective rate of clinical treatment is re-latively high. Additionally, this article summarized the pharmacological research on YFBP and found that it possessed various pharmacological effects, including anti-inflammatory, antioxidant, anticancer, and immune-modulating properties. Finally, correlation analysis was conducted on the main diseases, TCM types, prescription doses, pharmacological effects and action targets of YFBP, which to show the relationship between these five aspects in a visual form, reflecting the relationship between its clinical application and modern pharmacological effects. These findings provide a reference basis for further development and research on YFBP.


Assuntos
Aconitum , Diterpenos , Medicamentos de Ervas Chinesas , Pós , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa
4.
Chin Med ; 18(1): 124, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742025

RESUMO

Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1ß), transforming growth factor-beta (TGF-ß), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.

5.
J Sep Sci ; 46(8): e2200856, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36772844

RESUMO

Ipomoea pes-caprae (L.) R. Br (Convolvulaceae) is a commonly used marine traditional Chinese medicine in the southern coastal areas of China. It has been widely used to treat rheumatoid arthritis, but its effective substances and anti-rheumatoid arthritis mechanism remain ambiguous. Hence, in this study, the chemical profile and absorbed ingredients of Ipomoea pes-caprae were elucidated by ultra-performance liquid chromatography-mass spectrometry. Moreover, targeted network pharmacology was used to clarify the mechanism of action of Ipomoea pes-caprae in treating rheumatoid arthritis. Finally, 23 compounds were identified in the aqueous extracts of Ipomoea pes-caprae and 12 absorbed ingredients were detected in rats' plasma. These 12 absorbed ingredients might be the essential effective substances of Ipomoea pes-caprae. The tissue distributions of 3 absorbed ingredients in rats were successfully analyzed. The targeted network pharmacological analysis results indicated that the regulation of inflammatory reaction, immune response, cell proliferation, and apoptosis were the critical mechanism of Ipomoea pes-caprae against rheumatoid arthritis. This study successfully clarified the effective substances and potential mechanisms of Ipomoea pes-caprae in treating rheumatoid arthritis. The results of this research could provide a valuable reference for further scientific research and clinical application.


Assuntos
Artrite Reumatoide , Ipomoea , Ratos , Animais , Ipomoea/fisiologia , Farmacologia em Rede , Inflamação , Artrite Reumatoide/tratamento farmacológico , China
6.
Front Pharmacol ; 13: 1069310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532729

RESUMO

Aquaporins (AQPs) are a family of transmembrane proteins expressed in various organ systems. Many studies have shown that the abnormal expression of AQPs is associated with gastrointestinal, skin, liver, kidneys, edema, cancer, and other diseases. The majority of AQPs are expressed in the digestive system and have important implications for the physiopathology of the gastrointestinal tract as well as other tissues and organs. AQP regulators can prevent and treat most gastrointestinal-related diseases, such as colorectal cancer, gastric ulcer, and gastric cancer. Although recent studies have proposed clinically relevant AQP-targeted therapies, such as the development of AQP inhibitors, clinical trials are still lacking and there are many difficulties. Traditional Chinese medicine (TCM) has been used in China for thousands of years to prevent, treat and diagnose diseases, and is under the guidance of Chinese medicine (CM) theory. Herein, we review the latest research on the regulation of AQPs by TCMs and their active components, including Rhei Radix et Rhizoma, Atractylodis macrocephalae Rhizoma, Salviae miltiorrhizae Radix et Rhizoma, Poria, Astragali radix, and another 26 TCMs, as well as active components, which include the active components include anthraquinones, saponins, polysaccharides, and flavonoid glycosides. Through our review and discussion of numerous studies, we attempt to explore the regulatory effects of TCMs and their active components on AQP expression in the corresponding parts of the body in terms of the Triple Energizer concept in Chinese medicine defined as "upper energizer, middle energizer, and lower energizer,"so as to offer unique opportunities for the development of AQP-related therapeutic drugs for digestive system diseases.

7.
Chin Herb Med ; 14(4): 479-493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405057

RESUMO

Zedoary tumeric (Curcumae Rhizoma, Ezhu in Chinese) has a long history of application and has great potential in the treatment of liver cancer. The antiliver cancer effect of zedoary tumeric depends on the combined action of multiple pharmacodynamic substances. In order to clarify the specific mechanism of zedoary tumeric against liver cancer, this paper first analyzes the mechanism of its single pharmacodynamic substance against liver cancer, and then verifies the joint anti liver cancer mechanism of its "pharmacodynamic group". By searching the research on the antihepatoma effect of active components of zedoary tumeric in recent years, we found that pharmacodynamic substances, including curcumol, zedoarondiol, curcumenol, curzerenone, curdione, curcumin, germacrone, ß-elemene, can act on multi-target and multi-channel to play an antihepatoma role. For example, curcumin can regulate miR, GLO1, CD133, VEGF, YAP, LIN28B, GPR81, HCAR-1, P53 and PI3K/Akt/mTOR, HSP70/TLR4 and NF-κB. Wnt/TGF/EMT, Nrf2/Keap1, JAK/STAT and other pathways play an antihepatoma role. Network pharmacological analysis showed that the core targets of the "pharmacodynamic group" for anti-life cancer are AKT1, EGFR, MAPK8, etc, and the core pathways are neuroactive live receiver interaction, nitrogen metabolism, HIF-1 signaling pathway, etc. At the same time, by comparing and analyzing the relationship between the specific mechanisms of pharmacodynamic substance and "pharmacodynamic group", it is found that they have great reference significance in target, pathway, biological function, determination of core pharmacodynamic components, formation of core target protein interaction, in-depth research of single pharmacodynamic substance, increasing curative effect and so on. By analyzing the internal mechanism of zedoary tumeric pharmacodynamic substance and "pharmacodynamic group" in the treatment of liver cancer, this paper intends to provide some ideas and references for the deeper pharmacological research of zedoary tumeric and the relationship between pharmacodynamic substance and "pharmacodynamic group".

8.
Front Pharmacol ; 13: 1039412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313301

RESUMO

In recent years, activation of thermal transient receptor potential (TRP) ion channels at a range of temperatures has received widespread attention as a target for traditional Chinese medicine (TCM) to regulate body temperature and relieve pain. Discovery of transient receptor potential vanilloid 1 (TRPV1) was awarded a Nobel Prize, reflecting the importance of these channels. Here, the regulatory effects of TCMs and their active ingredients on TRP ion channels are reviewed, and future directions for research on the cold, hot, warm, cool, and neutral natures of TCMs are considered. In herbs with cold, hot, warm, cool, and neutral natures, we found 29 TCMs with regulatory effects on TRP ion channels, including Cinnamomi Cortex, Capsici Fructus, Rhei Radix et Rhizoma, Macleayae cordatae Herba, Menthae Haplocalycis Herba, and Rhodiolae Crenulatae Radix et Rhizoma. Although some progress has been made in understanding the regulation of TRP ion channels by TCMs and their ingredients, the molecular mechanism by which TCMs have this effect remains to be further studied. We hope this review will provide a reference for further research on the cold, hot, warm, cool, and neutral natures of TCMs.

9.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4765-4777, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164884

RESUMO

Epidemic diseases have caused huge harm to the society. Traditional Chinese medicine(TCM) has made great contributions to the prevention and treatment of them. It is of great reference value for fighting diseases and developing drugs to explore the medication law and mechanism of TCM under TCM theory. In this study, the relationship between the TCM theory of cold pestilence and modern epidemic diseases was investigated. Particularly, the the relationship of coronavirus disease 2019(COVID-19), severe acute respiratory syndrome(SARS), and influenza A(H1 N1) with the cold pestilence was identified and analyzed. The roles of TCM theory of cold pestilence in preventing and treating modern epidemic diseases were discussed. Then, through data mining and textual research, prescriptions for the treatment of cold pestilence were collected from major databases and relevant ancient books, and their medication laws were examined through analysis of high-frequency medicinals and medicinal pairs, association rules analysis, and cluster analysis. For example, the prescriptions with high confidence levels were identified: "Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Paeoniae Radix Alba" "Glycyrrhizae Radix et Rhizoma-Pinelliae Rhizoma-Bupleuri Radix", and TCM treatment methods with them were analyzed by clustering analysis to yield the medicinal combinations: "Zingiberis Rhizoma-Aconiti Lateralis Radix Praeparata-Ginseng Radix et Rhizoma" "Poria-Atractylodis Macrocephalae Rhizoma" "Cinnamomi Ramulus-Asari Radix et Rhizoma" "Citri Reticulatae Pericarpium-Perillae Folium" "Pinelliae Rhizoma-Magnoliae Officinalis Cortex-Atractylodis Rhizoma" "Paeoniae Radix Alba-Angelicae Sinensis Radix-Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Scutellariae Radix-Rhizoma Zingiberis Recens" "Ephedrae Herba-Armeniacae Semen Amarum-Gypsum Fibrosum" "Chuanxiong Rhizoma-Notopterygii Rhizoma et Radix-Angelicae Dahuricae Radix-Platycodonis Radix-Saposhnikoviae Radix". Then, according to the medication law for cold pestilence, the antiviral active components of medium-frequency and high-frequency medicinals were retrieved. It was found that these components exerted the antiviral effect by inhibiting virus replication, regulating virus proteins and antiviral signals, and suppressing protease activity. Based on network pharmacology, the mechanisms of the medicinals against severe acute respiratory syndrome coronavirus(SARS-CoV), 2019 novel coronavirus(2019-nCoV), and H1 N1 virus were explored. It was determined that the key targets were tumor necrosis factor(TNF), endothelial growth factor A(VEGFA), serum creatinine(SRC), epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), mitogen-activated protein kinase 14(MAPK14), and prostaglandin-endoperoxide synthase 2(PTGS2), which were involved the mitogen-activated protein kinase(MAPK) pathway, advanced glycation end-products(AGE)-receptor for AGE(RAGE) pathway, COVID-19 pathway, and mTOR pathway. This paper elucidated the medication law and mechanism of TCM for the prevention and treatment of epidemic diseases under the guidance of TCM theory of cold pestilence, in order to build a bridge between the theory and modern epidemic diseases and provide reference TCM methods for the prevention and treatment of modern epidemic diseases and ideas for the application of data mining to TCM treatment of modern diseases.


Assuntos
Aconitum , Controle de Doenças Transmissíveis , Doenças Transmissíveis , Medicamentos de Ervas Chinesas , Epidemias , Medicina Tradicional Chinesa , Pinellia , Antivirais , COVID-19/epidemiologia , Sulfato de Cálcio , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Creatinina , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas/uso terapêutico , Fatores de Crescimento Endotelial , Epidemias/prevenção & controle , Receptores ErbB , Humanos , Metaloproteinase 9 da Matriz , Proteína Quinase 14 Ativada por Mitógeno , SARS-CoV-2 , Serina-Treonina Quinases TOR , Fatores de Necrose Tumoral , Tratamento Farmacológico da COVID-19
10.
J Sep Sci ; 45(18): 3443-3458, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932223

RESUMO

In this study, we proposed an integrated analytical strategy for the rapid and comprehensive discovery of a specific class of secoiridoid glycosides from a Yao medicine, Jasminum pentaneurum Hand.-Mazz. The strategy fully took advantage of the accuracy of ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry, and the efficiency of diagnostic ion filtering and neutral loss filtering. Twenty-four secoiridoid glycosides, including three known ones and 21 unreported ones, were rapidly discovered and characterized based on the detail analysis of their mass spectrometry data. Particularly, 10-syringicoyl-ligustroside (18) was isolated under the guidance of mass spectrometry analysis. Its chemical structure was elucidated on the basis of extensive spectroscopic data analysis, and absolute configuration was further elucidated by comparison of its experimental and electronic circular dichroism spectra. Furthermore, the mass spectrometry data of 18 was analyzed and the corresponding results indicated that its fragment pathway was fully consistent with the applied diagnostic ion filtering and neutral loss filtering rules, and thus the precision and efficiency of the integrated strategy were validated. The result demonstrated that the proposed integrated strategy could serve as a rapid, accurate, and comprehensive targeted components discovery method to effectively screen out those ingredients of interest from the complex herbal medicines.


Assuntos
Medicamentos de Ervas Chinesas , Jasminum , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas/análise , Glicosídeos Iridoides/análise , Espectrometria de Massas em Tandem/métodos
11.
Curr Drug Metab ; 23(8): 652-665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980053

RESUMO

AIMS: In this study, we aim to establish an integrated research strategy for the rapid chemical profiling of Compound Huanggen Granules (CHG) and absorbed prototypes in plasma by integrating the UHPLC-Q-TOF-MSE method and data post-processing strategy, to provide some valuable research basis for the further studies on the quality control, pharmacokinetics and pharmacodynamics of CHG. BACKGROUND: Compound Huanggen Granules (CHG), a traditional Chinese medicine (TCM) hospital preparation, has long been used in clinical practice for the prevention and treatment of liver fibrosis. However, due to the lack of in vitro chemical and in vivo metabolism studies, its pharmacodynamic material basis is still unrevealed. OBJECTIVE: To simplify the mass data post-processing process and enhance the structural identification efficiency by reducing the possibility of false positive, and rapidly identify the absorbed prototypes in plasma after oral administration of CHG. METHODS: An analytical strategy integrating ultra high-performance liquid chromatography coupled with quadrupletime- of-flight mass spectrometry (UHPLC-Q-TOF-MSE, E represents collision energy) method and data postprocessing strategy based on a self-built in-house components database was established and utilized for the rapid characterization of the multi-constituents of CHG and prototypes in cynomolgus monkey plasma after oral administration. RESULTS: As a result, a total of 81 compounds, including 14 phenolic acids, 6 coumarins, 25 flavonoids, 5 anthraquinones, 5 phenylpropanoids, 15 triterpenoid saponins, and 11 others, were plausibly or unambiguously identified based on their accurate masses, and MS/MS fragment pathways analysis, and also by comparison of retention time and MS data with reference standards. In the in vivo study, according to the extracted ion chromatograms (EICs) of identified components, 34 absorbed prototypical components were rapidly identified in cynomolgus monkey plasma after oral administration. CONCLUSION: It was demonstrated that the data post-processing strategy applied in this study could greatly simplify the data post-processing process and enhance the structural identification efficiency by reducing the possibility of false positives, and the results obtained might be helpful for further studies on the quality control, pharmacokinetics and pharmacodynamics of CHG.


Assuntos
Medicina Tradicional Chinesa , Espectrometria de Massas em Tandem , Animais , Macaca fascicularis
12.
Phytomedicine ; 103: 154233, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671633

RESUMO

BACKGROUND: In hypercholesteremia, the concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are enhanced in serum, which is strongly associated with an increased risk of developing atherosclerosis. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, was found to alleviate hypercholesterolemia and hypercholesterolemia-induced cardiovascular disease. However, the specific targets and molecular mechanisms related to the effects of UA in reducing cholesterol have not been elucidated. PURPOSE: In this study, we aimed to illustrate the target of UA in the treatment of hypercholesterolemia and to reveal its underlying molecular mechanism. METHODS: Nontargeted metabolomics was conducted to analyze the metabolites and related pathways that UA affected in vivo. The main lipid metabolism targets of UA were analyzed by target fishing and fluorescence colocalization in mouse liver. Molecular docking, in-gel fluorescence scan and thermal shift were assessed to further investigate the binding site of the UA metabolite with HMGCS1. C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks to induce hypercholesteremia. Liver tissues were used to verify the cholesterol-lowering molecular mechanism of UA by targeted metabolomics, serum was used to detect biochemical indices, and the entire aorta was used to analyze the formation of atherosclerotic lesions. RESULTS: Our results showed that hydroxy­3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) was the primary lipid metabolism target protein of UA. The UA metabolite epoxy-modified UA irreversibly bonds with the thiol of Cys-129 in HMGCS1, which inhibits the catalytic activity of HMGCS1 and reduces the generation of precursors in cholesterol biosynthesis in vivo. The contents of TC and LDL-C in serum and the formation of the atherosclerotic area in the entire aorta were markedly reduced with UA treatment in Diet-induced hypercholesteremia mice. CONCLUSION: UA inhibits the catalytic activity of HMGCS1, reduces the generation of downstream metabolites in the process of cholesterol biosynthesis and alleviates Diet-induced hypercholesteremia via irreversible binding with HMGCS1 in vivo. It is the first time to clarify the irreversible inhibition mechanism of UA against HMGCS1. This paper provides an increased understanding of UA, particularly regarding the molecular mechanism of the cholesterol-lowering effect, and demonstrates the potential of UA as a novel therapeutic for the treatment of hypercholesteremia.


Assuntos
Aterosclerose , Hipercolesterolemia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Colesterol , LDL-Colesterol , Coenzima A Ligases , Dieta Hiperlipídica , Hipercolesterolemia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Triterpenos , Ácido Ursólico
13.
Pharm Biol ; 60(1): 915-930, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35587342

RESUMO

CONTEXT: Gnetum montanum Markgr. (Gnetaceae) is used to treat rheumatic arthralgia and bruises in the clinic. OBJECTIVE: To exam the activity and mechanism of G. montanum extract (GME) against colon cancer cells SW480. MATERIALS AND METHODS: The anti-proliferative activity of GME (0-120 µg/mL) on SW480 cells was determined using MTS assay at 24, 48, and 72 h. The in vitro activity of GME (0-120 µg/mL) on SW480 cells was investigated using flow cytometry and western blotting analysis. The in vivo activity of GME was evaluated using xenograft tumour model of zebrafish and nude mice. The chemical composition of GME was detected by using HPLC-MS/MS. RESULTS: The IC50 value SW480 cells viability by GME were 126.50, 78.25, and 50.77 µg/mL, respectively, for 24, 48, and 72 h. The experiments showed that apoptotic cells and G2/M phase cells increased from 20.81 to 61.53% (p < 0.01) and 25.76 to 34.93% with 120 µg/mL GME, respectively. GME also down-regulated the protein expression of P-AKT, P-GSK-3ß, P-PDK1, P-c-Raf, caspase-3, and Bcl-2, and up-regulated the expression cleaved caspase-3, cleaved PARP, and Bax. In vivo study found that GME can significantly inhibit the growth and migration of SW480 cells in xenograft zebrafish. GME reduced the nude mice tumour weight to approximately 32.19% at 28 mg/kg/day and to 53.17% (p < 0.01) at 56 mg/kg/day. Forty-two compounds were identified from the GME. DISCUSSION AND CONCLUSIONS: GME has a significant antitumor effect on colon cancer cells SW480, and it has the potential to be developed as an anticancer agent.


Assuntos
Neoplasias do Colo , Gnetum , Animais , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Glicogênio Sintase Quinase 3 beta , Gnetum/metabolismo , Humanos , Camundongos , Camundongos Nus , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas em Tandem , Peixe-Zebra/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1739-1753, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534245

RESUMO

Curcuma kwangsiensis root tuber is a widely used genuine medicinal material in Guangxi, with the main active components of terpenoids and curcumins. It has the effects of promoting blood circulation to relieve pain, moving Qi to relieve depression, clearing heart and cooling blood, promoting gallbladder function and anti-icterus. Modern research has proved its functions in liver protection, anti-tumor, anti-oxidation, blood lipid reduction and immunosuppression. Considering the research progress of C. kwangsiensis root tubers and the core concept of quality marker(Q-marker), we predicted the Q-markers of C. kwangsiensis root tubers from plant phylogeny, chemical component specificity, traditional pharmacodynamic properties, new pharmacodynamic uses, chemical component measurability, processing methods, compatibility, and components migrating to blood. Curcumin, curcumol, curcumadiol, curcumenol, curdione, germacrone, and ß-elemene may be the possible Q-markers. Based on the predicted Q-markers, the mechanisms of the liver-protecting and anti-tumor activities of C. kwangsiensis root tubers were analyzed. AKT1, IL6, EGFR, and STAT3 were identified as the key targets, and neuroactive ligand-receptor interaction signaling pathway, nitrogen metabolism pathway, cancer pathway, and hepatitis B pathway were the major involved pathways. This review provides a basis for the quality evaluation and product development of C. kwangsiensis root tubers and gives insights into the research on Chinese medicinal materials.


Assuntos
Curcuma , Neoplasias , China , Curcuma/química , Humanos , Fígado , Terpenos/farmacologia
15.
Front Oncol ; 11: 727130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858814

RESUMO

Colon cancer is the third most common cancer in the world with a high mortality rate. At present, surgery combined with radiotherapy and chemotherapy is the primary treatment, but patient prognosis remains poor. Traditional Chinese medicine (TCM) has become a complementary and alternative source of anti-cancer drugs. Camellia nitidissima Chi (CNC) is a TCM used to treat a variety of cancers. However, the role of CNC in cancer remains elusive, and its effect and mechanism on colon cancer have not been reported. Here, we show that CNC exerts an excellent inhibitory effect on colon cancer proliferation and apoptosis induction in vitro and in vivo. We performed label free-based quantitative proteomic analysis to evaluate the HCT116 cells treated with CNC. Our data revealed a total of 363 differentially expressed proteins, of which 157 were up-regulated and 206 down-regulated. Gene Ontology enrichment analysis showed that these proteins were involved in tumor occurrence and development through multiple biological processes such as cell proliferation, cell apoptosis, cell cycle, and cell death. Interestingly, we also found significant changes in ferroptosis pathways. The role of essential proteins glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HMOX1) were verified. CNC decreased the expression of GPX4 and increased the expression of HMOX1 at the mRNA and protein levels in vivo and in vitro. Collectively, these findings reveal that CNC regulates colon cancer progression via the ferroptosis pathway and could be an attractive treatment for colon cancer.

16.
Chin Herb Med ; 13(4): 502-517, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34659385

RESUMO

OBJECTIVE: To analyze the medication rules of traditional Chinese medicine (TCM) preventive oral prescriptions for COVID-19. METHODS: The preventive oral prescriptions for COVID-19 published by national and provincial health and wellness committees, administrations of TCM, medical institutions at all levels, medical masters and Chinese medicine experts were collected to establish a database, manual screening was carried out according to the inclusion and exclusion criteria, and frequency statistics, association rule analysis. The mutual information method, entropy hierarchical clustering and other methods were improved through Excel and the TCM inheritance auxiliary platform V2.5 to mine the rules and characteristics of medication. RESULTS: The selected 157 prescriptions contained a total of 130 TCMs. The top five TCMs with the highest use frequency were Glycyrrhizae Radix et Rhizoma (86), Astragali Radix (80), Lonicerea Japonicae Flos (70), Atractylodis Macrocephalae Rhizoma (62), Saposhnikoviae Radix (60). In accordance with TCM efficacy classification, most of them were medicines for qi-tonifying (279), followed by medicines for clearing heat and drying dampness (163), dispelling pathogenic wind-cold (126), resolving dampness (111), as well as dispelling pathogenic wind-heat (99). The characteristics of four-natures of the selected medicines are as follows: most of them were cold (59), followed by warm (38) and mild (21). In terms of five-taste, most of them were sweet (26) and acrid-and-bitter (24), followed by sweet-and-bitter (20), bitter (20) and acrid (15). For the meridian attribution, the five-zang organs and six-fu organs were all involved, most of them attributed to lung meridian (80), followed by stomach meridian (57) and spleen meridian (40). Based on association rule analysis, 12 commonly used medicine combinations with two or three TCMs were found. The commonly used medicinal pairs included Astragali Radix and Saposhnikoviae Radix (51), Astragali Radix and Atractylodis Macrocephalae Rhizoma (46), Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix (43), Astragali Radix and Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix (38), Forsythiae Fructus and Astragali Radix (37), and so on. In addition, 14 core combinations of medicines were obtained by complex system entropy cluster analysis, on this basis, six new prescriptions were screened out based on unsupervised entropy hierarchical clustering analysis. According to The Catalogue of Edible Traditional Chinese Medicinal Materials, Traditional Chinese Medicinal Materials for Health Food, and New Resources of Food published by National Health Commission of the People's Republic of China, there are 35 species belonging to the group of edible traditional Chinese medicinal materials, 20 species belonging to the group of new resources of food, 31 species belonging to the group of traditional Chinese medicinal materials for health food, 19.11% of the preventive oral prescriptions for COVID-19 were composed of the medicines belonging to the above three groups. Besides, there are 11 toxic species, and 24.84% of the preventive oral prescriptions for COVID-19 contained toxic TCMs. CONCLUSION: We found that invigorating qi and resolving dampness were the main treatment used to prevent for COVID-19, combined with the methods for strengthening vital energy and eliminating pathogenic factors. Most of the preventive oral prescriptions for COVID-19 were treated in lung, spleen and stomach meridians. In the process of selecting prescriptions and using TCMs to prevent for COVID-19, the safety of preventive medicines was also emphasized. And the theory of "Preventive Treatment of Disease" was embodied in these preventive oral prescriptions for COVID-19. For the prescriptions containing toxic TCMs, special attention should be paid to their safety in clinical application.

17.
Food Chem X ; 12: 100143, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34712950

RESUMO

Safflower (Carthamus tinctorius L.) is a famous food additive and herbal medicine in China. In the present research, an online comprehensive two-dimensional hydrophilic interaction chromatography coupled to a diode array detector and a hybrid linear ion trap-Orbitrap mass spectrometry (HILIC × HILIC-DAD-ESI/HRMS/MS n ) platform was developed to analyze the flavonoids and alkaloids in safflower. By combining with an XBridge Amide column (150 mm × 4.6 mm, 3.5 µm) and an Ultimate amide column (50 mm × 4.6 mm, 5 µm), the system orthogonality reached 88% and a total of 231 peaks were detected. Altogether 93 compounds, including 75 flavonoids and their glycosides and 10 alkaloids were unambiguously or tentatively identified in both negative and positive ion modes, using accurate mass and MS fragment data. Among them, 5 compounds were discovered and reported from safflower for the first time. The established HILIC × HILIC platform should be a powerful tool for the separation and characterization of complicated matrices in natural herbs.

18.
Chin Herb Med ; 13(4): 518-524, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34630536

RESUMO

OBJECTIVE: Coronavirus Disease 2019 (COVID-19) has been diagnosed as an epidemic disease characterized by cold and dampness pathogens in TCM clinic. Due to many Chinese medicines with different functions were used in the treatment of COVID-19, it is very important to find the law of application of damp-removing traditional Chinese medicine with high frequency application, with view to providing a reference for the use and research of Chinese medicine to further control the pandemic. METHODS: The publicly released diagnosis and treatment programs issued by the National Health Commission and Health Commission of provinces, autonomous regions and municipalities, and Chinese herbs prescription information in these were collected, a database was established, and Excel and Graphpad 8.0 software were used to analyze the frequency of use of various Chinese medicines, the frequency and property characters including five flavors (bitter, pungent, sweet, sour, and salty) and four natures (warm, hot, cool, and cold) and channel tropisms of Chinese medicine for removing dampness. RESULTS: A total of 137 prescriptions of Chinese medicine for treating COVID-19 were collected, including 178 TCMs showing functions of resolving phlegm, relieving cough and asthma, resolving dampness, clearing damp and inducing dieresis, clearing heat, tonifying deficiency, and relieving exterior syndrome, in which the TCMs with the first four functions that we called the dampness-removing TCMs, accounted for 35.78%. Also a number of TCMs in the rest functions showed removing-dampness. The first four functions were divided into subfunctions including aromatic resolving dampness, clearing heat and drying dampness, drying dampness and tonifying spleen qi, drying dampness and removing phlegm, inducing diuresis and relieving swelling, inducing diuresis and relieving exterior syndrome. Among them, the most frequently used TCMs was Ephedrae Herba, followed by Citri Reticulatae Pericarpium, Pogostemonis Herba, Pinelliae Rhizoma, Poria, Scutellariae Radix, and Atractylodis Rhizoma. The property character analysis in the dampness-removing TCMs showed that bitter and pungent were largely present and sour and astringent were absent, warm and hot were dominant; And the lung, spleen, stomach, large intestine, bladder were main channel tropisms. CONCLUSION: Dampness-removing TCMs are the first important type of traditional Chinese medicine to be considered in the treatment of COVID-19 in Chinese medicine. The application of dampness-removing TCMs in the treatment of COVID-19 needs to be combined with its application law. This study may provide meaningful and useful information on further research to investigate the effective compounds from the dampness-removing Chinese medicine with high frequency application, and also provide a reference for the clinical treatment of COVID-19 accurately against dampness evil with dampness-removing traditional Chinese medicines.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34484402

RESUMO

Camellia nitidissima Chi (CNC) is a traditional Chinese medicine (TCM) with anticancer property. However, its underlying mechanisms of anti-colon cancer (CC) remain unknown. Therefore, a systematic approach is proposed in the present study to elucidate the anticancer mechanisms of CNC based on network pharmacology and experimental validation. Initially, the potential active ingredients of CNC were verified via the TCMSP database based on the oral bioavailability (OB) and drug-likeness (DL) terms. Hub targets of CNC were acquired from SwissTarget prediction and TCMSP databases, and target genes related to CC were gathered from GeneCards and OMIM databases. Cytoscape was used to establish the compound-target networks. Next, the hub target genes collected from the CNC and CC were parsed via GO and KEGG analysis. Results of GO and KEGG analysis reveal that quercetin and luteolin in CNC, VEGFA and AKT1 targets, and PI3K-Akt pathway were associated with the suppression of CC. Besides, the result of molecular docking unveils that VEGFA demonstrates the most powerful binding affinity among the binding outcomes. This finding was successfully validated using in vitro HCT116 cell model experiment. In conclusion, this study proved the usefulness of integrating network pharmacology with in vitro experiments in the elucidation of underlying molecular mechanisms of TCM.

20.
Cardiovasc Toxicol ; 21(11): 901-913, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339023

RESUMO

Camphor is a terpene ketone with aromatic and volatile properties in nature derived from the bark of Cinnamomum camphora or synthesized from turpentine. Camphor exhibits various biological properties such as anti-microbial, anti-viral, anti-coccidial, and anti-cancer. It is also used as a form of topical medication for skin irritation, joint pain, and as a relief for itching from insect bites. However, even though the high dose of camphor has been documented to be toxic/lethal in humans in different studies, camphor's developmental toxicity has not yet been explored, and its extensive mechanism of action is still unclear. In the present study, we aimed to assess the toxic effects of camphor in zebrafish embryos in the initial developmental stages. The obtained results demonstrated that a sub-lethal dose of camphor caused a decrease in hatching rate, body length, and substantial elevation in malformation rate on zebrafish embryos. On further observation, in the following time frame, curved body and pericardial edema of zebrafish were also observed. Furthermore, exposure to a sub-lethal dose of camphor was also able to trigger cardiotoxicity in zebrafish larvae. Later, on subsequent biochemical analysis, it was found that the antioxidant capacity inhibition and oxidative stress elevation that occurred after camphor exposure might be associated with the inhibition of total superoxide dismutase (SOD) activity and an increase in reactive oxygen species (ROS) and malondialdehyde (MDA) concentration. In addition, compared to the control group, several apoptotic cells in treated zebrafish were also found to be elevated. Finally, after further investigation on marker gene expressions, we conclude that the developmental toxicity of camphor exposure might be associated with apoptosis elevation and oxidative stress. Taken together, the current study provides a better understanding of the developmental toxicity of camphor on zebrafish, a promising alternative animal model to assess the developmental toxicity of chemical compounds.


Assuntos
Apoptose/efeitos dos fármacos , Cânfora/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Cardiotoxicidade , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/fisiopatologia , Malondialdeído/metabolismo , Morfogênese , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA