Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta Med ; 85(16): 1275-1286, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31627219

RESUMO

Breast cancer is one of the most common cancers diagnosed among women worldwide. Estrogen receptor alpha (ERα) is a transcriptional factor that plays an important role in the development and progression of breast cancer. Yuanhuatine, a natural daphnane-type diterpenoid extracted from Daphne genkwa, was reported to exhibit significant cytotoxicity against breast cancer cells. However, the underlying mechanism is still unclear. In this study, we evaluated the cytotoxicity of yuanhuatine on two breast cancer cell lines that are ERα-positive and -negative. The results show that yuanhuatine inhibits the growth of ERα-positive cells (MCF-7) with much stronger inhibitory activity (IC50 = 0.62 µM) compared with positive control tamoxifen (IC50 = 14.43 µM). However, no obvious cytotoxicity was observed in ERα-negative cells (MDA-MB-231). Subsequent experiment also indicated that yuanhuatine markedly induced mitochondrial dysfunction, leading to apoptosis in MCF-7 cells. Molecular docking studies suggest the potential interactions between yuanhuatine and ERα. Immunofluorescence staining and Western blot analysis indicated that yuanhuatine down-regulated the expression of ERα in MCF-7 cells. MPP, a specific ERα inhibitor, significantly enhanced yuanhuatine-induced mitochondrial dysfunction and apoptosis in MCF-7 cells. On the contrary, the treatment with yuanhuatine causes no apoptosis in MM231 cells. Altogether, in vitro and in silico results suggested that ERα down-regulation was involved in yuanhuatine-induced mitochondrial dysfunction and apoptosis in ERα-positive breast cancer cells. Thus, yuanhuatine could be a potential candidate for treating ERα-positive breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Daphne/química , Tamoxifeno/farmacologia , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Tamoxifeno/química
2.
J Asian Nat Prod Res ; 21(7): 666-672, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29888617

RESUMO

Phytochemical investigation of Croton crassifolius roots afforded five sesquiterpenes (1-5), including two new sesquiterpenes 6S-hydroxy-cyperenoic acid (1) and crassifterpenoid A (5), together with three known compounds (2-4). The structures of the new compounds were determined by comprehensive spectroscopic methods, and their absolute configurations were determined by quantum chemical ECD calculation. Crassifterpenoid A (5) is the first germacrane-type sesquiterpene isolated from C. crassifolius, which enriched the diversity of chemical constituents in Croton crassifolius. In addition, the cytotoxicities of all compounds against human liver cancer lines HepG2 and Hep3B were determined, but none showed significant activity.


Assuntos
Croton/química , Raízes de Plantas/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Dicroísmo Circular , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Resultados Negativos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA