Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 841: 156566, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697218

RESUMO

Arctic Indigenous Peoples are among the most exposed humans when it comes to foodborne mercury (Hg). In response, Hg monitoring and research have been on-going in the circumpolar Arctic since about 1991; this work has been mainly possible through the involvement of Arctic Indigenous Peoples. The present overview was initially conducted in the context of a broader assessment of Hg research organized by the Arctic Monitoring and Assessment Programme. This article provides examples of Indigenous Peoples' contributions to Hg monitoring and research in the Arctic, and discusses approaches that could be used, and improved upon, when carrying out future activities. Over 40 mercury projects conducted with/by Indigenous Peoples are identified for different circumpolar regions including the U.S., Canada, Greenland, Sweden, Finland, and Russia as well as instances where Indigenous Knowledge contributed to the understanding of Hg contamination in the Arctic. Perspectives and visions of future Hg research as well as recommendations are presented. The establishment of collaborative processes and partnership/co-production approaches with scientists and Indigenous Peoples, using good communication practices and transparency in research activities, are key to the success of research and monitoring activities in the Arctic. Sustainable funding for community-driven monitoring and research programs in Arctic countries would be beneficial and assist in developing more research/monitoring capacity and would promote a more holistic approach to understanding Hg in the Arctic. These activities should be well connected to circumpolar/international initiatives to ensure broader availability of the information and uptake in policy development.


Assuntos
Mercúrio , Regiões Árticas , Canadá , Groenlândia , Humanos , Povos Indígenas
2.
Environ Toxicol Chem ; 39(12): 2462-2474, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025637

RESUMO

Mercury is found in Arctic marine mammals that are important in the diet of northern Indigenous peoples. The objectives of the present long-term study, spanning a 45-yr period, were to 1) investigate the temporal trends of total mercury (THg; muscle and liver) and selenium (Se; liver) in ringed seals (Pusa hispida) from different regions of the Canadian Arctic; and 2) examine possible relationships with age, diet, and climate parameters such as air temperature, precipitation, climatic indices, and ice-coverage. Ringed seals were collected by hunters in northern communities in the Beaufort Sea, Central Arctic, Eastern Baffin Island, Hudson Bay, and Ungava/Nunatsiavut regions (Canada) between 1972 and 2017. Mercury levels did not change through time in seal liver, but THg levels in muscle decreased in seals from Hudson Bay (-0.91%/yr) and Ungava/Nunatsiavut (-1.30%/yr). Carbon stable isotope values in seal muscle decreased significantly through time in 4 regions. Selenium-to-THg ratios were found to be >1 for all years and regions. Variation partitioning analyses across regions indicated that THg trends in seals were mostly explained by age (7.3-21.7%), climate parameters (3.5-12.5%), and diet (up to 9%); climate indices (i.e., Arctic and North Atlantic Oscillations, Pacific/North American pattern) explained the majority of the climate portion. The THg levels had a positive relationship with Arctic Oscillation for multiple regions. Associations of THg with air temperature, total precipitation, and sea-ice coverage, as well as with North Atlantic Oscillation and Pacific/North American pattern were found to vary with tissue type and geographical area. Environ Toxicol Chem 2020;39:2462-2474. © 2020 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Fisheries and Oceans Canada.


Assuntos
Clima , Monitoramento Ambiental , Mercúrio/análise , Focas Verdadeiras/metabolismo , Ar , Animais , Regiões Árticas , Canadá , Feminino , Geografia , Camada de Gelo , Fígado/metabolismo , Masculino , Músculos/metabolismo , Chuva , Selênio/metabolismo , Temperatura , Fatores de Tempo
3.
Environ Sci Pollut Res Int ; 23(18): 18211-21, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27272701

RESUMO

Multi-biological level assessments have become great tools to evaluate the health of aquatic ecosystems. Using this approach, a complementary study was designed to evaluate the health of yellow perch (Perca flavescens) populations in the St. Lawrence River (Quebec, Canada). In the present study, stress responses were compared at the transcriptomic, cellular, and tissue levels in yellow perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island and Lake St. Pierre (north and south). These results complement the physiological and chemical parameters as well as pathogen infection investigated in a companion paper published in the present issue. Thiobarbituric acid reactive substance (TBARS) analyses indicated the presence of oxidative stress in fish collected in the southern part of Lake St. Louis and at the downstream sites of Lake St. Pierre. High lipid peroxidation levels were found in the muscle of yellow perch caught at Beauregard Island, located downstream of the Montreal's wastewater treatment plant, suggesting an impact of the municipal effluent on redox homeostasis. Transcriptomic results indicated the down-regulation of genes related to lipid, glucose, and retinoid in southern Lake St. Pierre as well as a decrease in retinoid storage. Overall, biochemical and molecular markers indicated that the health status of yellow perch followed a decreasing gradient from upstream to downstream of the St. Lawrence River. This gradient is representative of the cumulative negative impacts of human activities on water and habitat quality along the river.


Assuntos
Percas , Transcriptoma , Animais , Canadá , Regulação para Baixo , Ecossistema , Feminino , Lagos , Masculino , Estresse Oxidativo , Quebeque , Rios , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA