Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Genet Metab Rep ; 31: 100873, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782614

RESUMO

Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in HADHB. LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks. Here, we describe a newborn with isolated LCKAT deficiency, presenting with neonatal-onset cardiomyopathy, rhabdomyolysis, hypoglycemia and lactic acidosis. Bi-allelic 185G > A (p.Arg62His) and c1292T > C (p.Phe431Ser) mutations were found in HADHB. Enzymatic analysis in both lymphocytes and cultured fibroblasts revealed LCKAT deficiency with a normal long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD, also part of MTP) enzyme activity. Clinically, the patient showed recurrent cardiomyopathy, which was monitored by speckle tracking echocardiography. Subsequent treatment with special low-fat formula, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT) and ketone body therapy in (sodium-D,L-3-hydroxybutyrate) was well tolerated and resulted in improved carnitine profiles and cardiac function. Resveratrol, a natural polyphenol that has been shown to increase fatty acid oxidation, was also considered as a potential treatment option but showed no in vitro benefits in the patient's fibroblasts. Even though our patient deceased at the age of 13 months, early diagnosis and prompt initiation of dietary management with addition of sodium-D,L-3-hydroxybutyrate may have contributed to improved cardiac function and a much longer survival when compared to the previously reported cases of isolated LCKAT-deficiency.

2.
Ageing Res Rev ; 78: 101621, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421606

RESUMO

Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.


Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Idoso , Envelhecimento/genética , Suplementos Nutricionais , Proteína Forkhead Box O3/genética , Humanos , Longevidade/fisiologia , Preparações Farmacêuticas
3.
Mol Genet Metab ; 134(1-2): 96-116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34340878

RESUMO

Gyrate atrophy of the choroid and retina (GACR) is a rare inborn error of amino acid metabolism caused by bi-allelic variations in OAT. GACR is characterised by vision decline in early life eventually leading to complete blindness, and high plasma ornithine levels. There is no curative treatment for GACR, although several therapeutic modalities aim to slow progression of the disease by targeting different steps within the ornithine pathway. No international treatment protocol is available. We systematically collected all international literature on therapeutic interventions in GACR to provide an overview of published treatment effects. METHODS: Following the PRISMA guidelines, we conducted a systematic review of the English literature until December 22nd 2020. PubMed and Embase databases were searched for studies related to therapeutic interventions in patients with GACR. RESULTS: A total of 33 studies (n = 107 patients) met the inclusion criteria. Most studies were designed as case reports (n = 27) or case series (n = 4). No randomised controlled trials or large cohort studies were found. Treatments applied were protein-restricted diets, pyridoxine supplementation, creatine or creatine precursor supplementation, l-lysine supplementation, and proline supplementation. Protein-restricted diets lowered ornithine levels ranging from 16.0-91.2%. Pyridoxine responsiveness was reported in 30% of included mutations. Lysine supplementation decreased ornithine levels with 21-34%. Quality assessment showed low to moderate quality of the articles. CONCLUSIONS: Based primarily on case reports ornithine levels can be reduced by using a protein restricted diet, pyridoxine supplementation (variation-dependent) and/or lysine supplementation. The lack of pre-defined clinical outcome measures and structural follow-up in all included studies impeded conclusions on clinical effectiveness. Future research should be aimed at 1) Unravelling the OAT biochemical pathway to identify other possible pathologic metabolites besides ornithine, 2) Pre-defining GACR specific clinical outcome measures, and 3) Establishing an international historical cohort.


Assuntos
Corioide/efeitos dos fármacos , Atrofia Girata/tratamento farmacológico , Erros Inatos do Metabolismo/tratamento farmacológico , Retina/efeitos dos fármacos , Corioide/patologia , Humanos , Mutação , Retina/patologia
4.
Clin Nutr ; 40(3): 1396-1404, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32948349

RESUMO

BACKGROUND & AIMS: Medium chain triglyceride (MCT) supplementation is often recommended as treatment for patients with long-chain fatty acid ß-oxidation (lcFAO) disorders, since they can be utilized as an energy source without the use of the defective enzyme. However, studies in mice and preterm infants suggest that not all medium-chain fatty acids (MCFA) are oxidized and may undergo elongation to long-chain fatty acids (LCFA). In this single blinded study, we explored the metabolic fates of MCT in healthy individuals using a 13C-labeled MCT tracer. METHOD: Three healthy males in rest received on two test days a primed continuous infusion of glyceryl tri[1,2,3,4-13C4]-octanoate with either an isocaloric supplementation of 1) exclusively MCT (MCT-only) or 2) a mixture of MCT, proteins and carbohydrates (MCT-mix). Gas chromatography - combustion - isotope ratio mass spectrometry (GC-C-IRMS) was used to determine 13C-enrichment of long-chain fatty acids in plasma and of 13CO2 in exhaled air. RESULTS: When provided as single energy source, an estimated 42% of administered MCT was converted to CO2. In combination with carbohydrates and proteins in the diet, oxidation of MCT was higher (62%). In both diets <1% of 13C-label was incorporated in LCFA in plasma, indicating that administered MCT underwent chain-elongation to LCT. CONCLUSIONS: Although the relative MCT oxidation rate was higher when combined with carbohydrates and protein, quantitatively more MCT was oxidized when given an isocaloric meal with solely MCT. As these results were obtained in the resting state opposed to during exercise, it is too early to give a recommendation concerning the use of MCT in lcFAO disorders. The data show that in resting healthy individuals only a very small part of the MCT is traced back as LCFA in plasma, suggesting that MCT treatment does not result in a large LCFA burden, however further research on storage of MCT in tissues is warranted. REGISTRATION: The study was registered in the Nederlands Trialregister. Protocol ID: Trial NL7417 (NTR7650).


Assuntos
Isótopos de Carbono , Ácidos Graxos/sangue , Triglicerídeos/administração & dosagem , Triglicerídeos/metabolismo , Adulto , Testes Respiratórios , Caprilatos , Dióxido de Carbono/metabolismo , Dieta , Humanos , Marcação por Isótopo , Masculino , Oxirredução
5.
Am J Clin Nutr ; 112(2): 413-426, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320006

RESUMO

BACKGROUND: Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. OBJECTIVES: We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. METHODS: A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. RESULTS: Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. CONCLUSIONS: NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664.


Assuntos
Acetilcarnitina/metabolismo , Composição Corporal/efeitos dos fármacos , Músculo Esquelético/metabolismo , Niacinamida/análogos & derivados , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Idoso , Suplementos Nutricionais/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , NAD/biossíntese , Niacinamida/administração & dosagem , Obesidade/metabolismo , Obesidade/fisiopatologia , Sobrepeso/metabolismo , Sobrepeso/fisiopatologia , Compostos de Piridínio
6.
J Inherit Metab Dis ; 43(4): 787-799, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31955429

RESUMO

A maladaptive shift from fat to carbohydrate (CHO) oxidation during exercise is thought to underlie myopathy and exercise-induced rhabdomyolysis in patients with fatty acid oxidation (FAO) disorders. We hypothesised that ingestion of a ketone ester (KE) drink prior to exercise could serve as an alternative oxidative substrate supply to boost muscular ATP homeostasis. To establish a rational basis for therapeutic use of KE supplementation in FAO, we tested this hypothesis in patients deficient in Very Long-Chain acyl-CoA Dehydrogenase (VLCAD). Five patients (range 17-45 y; 4 M/1F) patients were included in an investigator-initiated, randomised, blinded, placebo-controlled, 2-way cross-over study. Patients drank either a KE + CHO mix or an isocaloric CHO equivalent and performed 35 minutes upright cycling followed by 10 minutes supine cycling inside a Magnetic Resonance scanner at individual maximal FAO work rate (fatmax; approximately 40% VO2 max). The protocol was repeated after a 1-week interval with the alternate drink. Primary outcome measures were quadriceps phosphocreatine (PCr), Pi and pH dynamics during exercise and recovery assayed by in vivo 31 P-MR spectroscopy. Secondary outcomes included plasma and muscle metabolites and respiratory gas exchange recordings. Ingestion of KE rapidly induced mild ketosis and increased muscle BHB content. During exercise at FATMAX, VLCADD-specific plasma acylcarnitine levels, quadriceps glycolytic intermediate levels and in vivo Pi/PCr ratio were all lower in KE + CHO than CHO. These results provide a rational basis for future clinical trials of synthetic ketone ester supplementation therapy in patients with FAO disorders. Trial registration: ClinicalTrials.gov. Protocol ID: NCT03531554; METC2014.492; ABR51222.042.14.


Assuntos
Bebidas , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Treino Aeróbico , Cetose/induzido quimicamente , Erros Inatos do Metabolismo Lipídico/dietoterapia , Doenças Mitocondriais/dietoterapia , Doenças Musculares/dietoterapia , Adolescente , Adulto , Glicemia/análise , Carnitina/análogos & derivados , Carnitina/sangue , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Estudos Cross-Over , Dieta Cetogênica , Ésteres/administração & dosagem , Teste de Esforço , Feminino , Humanos , Cetonas/administração & dosagem , Erros Inatos do Metabolismo Lipídico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Países Baixos , Troca Gasosa Pulmonar , Adulto Jovem
7.
Front Pharmacol ; 11: 616834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597881

RESUMO

Patients with a deficiency in very long-chain acyl-CoA dehydrogenase (VLCAD), an enzyme that is involved in the mitochondrial beta-oxidation of long-chain fatty acids, are at risk for developing cardiac arrhythmias. In human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), VLCAD deficiency (VLCADD) results in a series of abnormalities, including: 1) accumulation of long-chain acylcarnitines, 2) action potential shortening, 3) higher systolic and diastolic intracellular Ca2+ concentrations, and 4) development of delayed afterdepolarizations. In the fatty acid oxidation process, carnitine is required for bidirectional transport of acyl groups across the mitochondrial membrane. Supplementation has been suggested as potential therapeutic approach in VLCADD, but its benefits are debated. Here, we studied the effects of carnitine supplementation on the long-chain acylcarnitine levels and performed electrophysiological analyses in VLCADD patient-derived hiPSC-CMs with a ACADVL gene mutation (p.Val283Ala/p.Glu381del). Under standard culture conditions, VLCADD hiPSC-CMs showed high concentrations of long-chain acylcarnitines, short action potentials, and high delayed afterdepolarizations occurrence. Incubation of the hiPSC-CMs with 400 µM L-carnitine for 48 h led to increased long-chain acylcarnitine levels both in medium and cells. In addition, carnitine supplementation neither restored abnormal action potential parameters nor the increased occurrence of delayed afterdepolarizations in VLCADD hiPSC-CMs. We conclude that long-chain acylcarnitine accumulation and electrophysiological abnormalities in VLCADD hiPSC-CMs are not normalized by carnitine supplementation, indicating that this treatment is unlikely to be beneficial against cardiac arrhythmias in VLCADD patients.

8.
Mol Metab ; 30: 192-202, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767171

RESUMO

OBJECTIVE: A decay in intracellular NAD+ levels is one of the hallmarks of physiological decline in normal tissue functions. Accordingly, dietary supplementation with NAD+ precursors can prevent, alleviate, or even reverse multiple metabolic complications and age-related disorders in diverse model organisms. Within the constellation of NAD+ precursors, nicotinamide riboside (NR) has gained attention due to its potent NAD+ biosynthetic effects in vivo while lacking adverse clinical effects. Nevertheless, NR is not stable in circulation, and its utilization is rate-limited by the expression of nicotinamide riboside kinases (NRKs). Therefore, there is a strong interest in identifying new effective NAD+ precursors that can overcome these limitations. METHODS: Through a combination of metabolomics and pharmacological approaches, we describe how NRH, a reduced form of NR, serves as a potent NAD+ precursor in mammalian cells and mice. RESULTS: NRH acts as a more potent and faster NAD+ precursor than NR in mammalian cells and tissues. Despite the minor structural difference, we found that NRH uses different steps and enzymes to synthesize NAD+, thus revealing a new NRK1-independent pathway for NAD+ synthesis. Finally, we provide evidence that NRH is orally bioavailable in mice and prevents cisplatin-induced acute kidney injury. CONCLUSIONS: Our data identify a new pathway for NAD+ synthesis and classify NRH as a promising new therapeutic strategy to enhance NAD+ levels.


Assuntos
NAD/biossíntese , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Linhagem Celular , Masculino , Camundongos , Niacinamida/metabolismo , Niacinamida/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool) , Compostos de Piridínio , Ratos
9.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474368

RESUMO

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Agmatina/metabolismo , Animais , Caenorhabditis elegans/microbiologia , Proteína Receptora de AMP Cíclico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Nutrientes/metabolismo
10.
EMBO Mol Med ; 11(9): e9854, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368626

RESUMO

Reversing or slowing the aging process brings great promise to treat or prevent age-related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the "classical" histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age-related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.


Assuntos
Envelhecimento Saudável/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Epigênese Genética , Envelhecimento Saudável/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Longevidade/efeitos dos fármacos
11.
PLoS Genet ; 15(3): e1007633, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845140

RESUMO

The deregulation of metabolism is a hallmark of aging. As such, changes in the expression of metabolic genes and the profiles of amino acid levels are features associated with aging animals. We previously reported that the levels of most amino acids decline with age in Caenorhabditis elegans (C. elegans). Glycine, in contrast, substantially accumulates in aging C. elegans. In this study we show that this is coupled to a decrease in gene expression of enzymes important for glycine catabolism. We further show that supplementation of glycine significantly prolongs C. elegans lifespan, and early adulthood is important for its salutary effects. Moreover, supplementation of glycine ameliorates specific transcriptional changes that are associated with aging. Glycine feeds into the methionine cycle. We find that mutations in components of this cycle, methionine synthase (metr-1) and S-adenosylmethionine synthetase (sams-1), completely abrogate glycine-induced lifespan extension. Strikingly, the beneficial effects of glycine supplementation are conserved when we supplement with serine, which also feeds into the methionine cycle. RNA-sequencing reveals a similar transcriptional landscape in serine- and glycine-supplemented worms both demarked by widespread gene repression. Taken together, these data uncover a novel role of glycine in the deceleration of aging through its function in the methionine cycle.


Assuntos
Caenorhabditis elegans/metabolismo , Glicina/metabolismo , Longevidade/fisiologia , Metionina/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Dieta , Genes de Helmintos , Glicina/administração & dosagem , Longevidade/efeitos dos fármacos , Longevidade/genética , Redes e Vias Metabólicas/genética , Mutação , Interferência de RNA , Serina/administração & dosagem , Serina/metabolismo , Transcriptoma/efeitos dos fármacos
12.
Biochim Biophys Acta ; 1862(8): 1375-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27112275

RESUMO

AIM: Acylcarnitines are fatty acid oxidation (FAO) intermediates, which have been implicated in diet-induced insulin resistance. Elevated acylcarnitine levels are found in obese, insulin resistant humans and rodents, and coincide with lower free carnitine. We hypothesized that increasing free carnitine levels by administration of the carnitine precursor γ-butyrobetaine (γBB) could facilitate FAO, thereby improving insulin sensitivity. METHODS: C57BL/6N mice were fed with a high fat or chow diet with or without γBB supplementation (n=10 per group). After 8weeks of diet, indirect calorimetry, glucose tolerance and insulin sensitivity tests were performed. AC profiles and carnitine biosynthesis intermediates were analyzed in plasma and tissues by tandem mass spectrometry (MS) and liquid chromatography tandem MS. RESULTS: γBB supplementation did not facilitate FAO, was unable to curb bodyweight and did not prevent impaired glucose homeostasis in the HFD fed mice in spite of marked alterations in the acylcarnitine profiles in plasma and liver. Remarkably, γBB did not affect the acylcarnitine profile in other tissues, most notably muscle. Administration of a bolus acetylcarnitine also caused significant changes in plasma and liver, but not in muscle acylcarnitine profiles, again without effect on glucose tolerance. CONCLUSION: Altogether, increasing carnitine availability affects acylcarnitine profiles in plasma and liver but does not modulate glucose tolerance or insulin sensitivity. This may be due to the lack of an effect on muscle acylcarnitine profiles, as muscle tissue is an important contributor to whole body insulin sensitivity. These results warrant caution on making associations between plasma acylcarnitine levels and insulin resistance.


Assuntos
Carnitina/análogos & derivados , Metabolismo Energético , Intolerância à Glucose/sangue , Resistência à Insulina , Obesidade/sangue , Animais , Betaína/análogos & derivados , Betaína/farmacologia , Carnitina/sangue , Carnitina/farmacologia , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/induzido quimicamente , Obesidade/patologia
13.
Sci Rep ; 4: 5285, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24923838

RESUMO

Mitochondria are semi-autonomous organelles regulated by a complex network of proteins that are vital for many cellular functions. Because mitochondrial modulators can impact many aspects of cellular homeostasis, their identification and validation has proven challenging. It requires the measurement of multiple parameters in parallel to understand the exact nature of the changes induced by such compounds. We developed a platform of assays scoring for mitochondrial function in two complementary models systems, mammalian cells and C. elegans. We first optimized cell culture conditions and established the mitochondrial signature of 1,200 FDA-approved drugs in liver cells. Using cell-based and C. elegans assays, we further defined the metabolic effects of two pharmacological classes that emerged from our hit list, i.e. imidazoles and statins. We found that these two drug classes affect respiration through different and cholesterol-independent mechanisms in both models. Our screening strategy enabled us to unequivocally identify compounds that have toxic or beneficial effects on mitochondrial activity. Furthermore, the cross-species approach provided novel mechanistic insight and allowed early validation of hits that act on mitochondrial function.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Ácidos Graxos Monoinsaturados/farmacologia , Fluvastatina , Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Imidazóis/farmacologia , Indóis/farmacologia , Lovastatina/farmacologia , Células MCF-7 , Camundongos , Mitocôndrias/metabolismo , Preparações Farmacêuticas/classificação , Reprodutibilidade dos Testes , Sinvastatina/farmacologia , Estados Unidos , United States Food and Drug Administration
14.
Cell Metab ; 15(6): 838-47, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22682224

RESUMO

As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.


Assuntos
Dieta Hiperlipídica/efeitos adversos , NAD/metabolismo , Niacinamida/análogos & derivados , Obesidade/prevenção & controle , Acetilação , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Encéfalo/metabolismo , Suplementos Nutricionais , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , NAD/sangue , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Obesidade/etiologia , Especificidade de Órgãos , Oxirredução , Consumo de Oxigênio , Processamento de Proteína Pós-Traducional , Compostos de Piridínio , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Aumento de Peso/efeitos dos fármacos
15.
Cell Metab ; 14(5): 612-22, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22055504

RESUMO

Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind crossover study for 30 days. Resveratrol significantly reduced sleeping and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1α protein levels, increased citrate synthase activity without change in mitochondrial content, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces metabolic changes in obese humans, mimicking the effects of calorie restriction.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Restrição Calórica/métodos , Fígado/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Estilbenos/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo/metabolismo , Alanina Transaminase/análise , Glicemia/análise , Pressão Sanguínea , Citrato (si)-Sintase/biossíntese , Estudos Cross-Over , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glicerol/sangue , Proteínas de Choque Térmico/biossíntese , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Países Baixos , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases/biossíntese , Resveratrol , Sirtuína 1/biossíntese , Estilbenos/administração & dosagem , Suíça , Fatores de Transcrição/biossíntese , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA