RESUMO
Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects. Dehydroevodiamine (DHE) and hortiamine were identified as IKr (rapid delayed rectifier current) inhibitors in Evodia extract by HPLC-microfractionation and subsequent patch clamp studies on human embryonic kidney cells. DHE and hortiamine inhibited IKr with IC50s of 253.2±26.3nM and 144.8±35.1nM, respectively. In dog ventricular cardiomyocytes, DHE dose-dependently prolonged the action potential duration (APD). Early afterdepolarizations (EADs) were seen in 14, 67, 100, and 67% of cells after 0.01, 0.1, 1 and 10µM DHE, respectively. The proarrhythmic potential of DHE was evaluated in 8 anesthetized rabbits and in 8 chronic atrioventricular block (cAVB) dogs. In rabbits, DHE increased the QT interval significantly by 12±10% (0.05mg/kg/5min) and 60±26% (0.5mg/kg/5min), and induced Torsade de Pointes arrhythmias (TdP, 0.5mg/kg/5min) in 2 rabbits. In cAVB dogs, 0.33mg/kg/5min DHE increased QT duration by 48±10% (P<0.05*) and induced TdP in 2/4 dogs. A higher dose did not induce TdP. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), methanolic extracts of Evodia, DHE and hortiamine dose-dependently prolonged APD. At 3µM DHE and hortiamine induced EADs. hERG inhibition at submicromolar concentrations, APD prolongation and EADs in hiPSC-CMs and dose-dependent proarrhythmic effects of DHE at micromolar plasma concentrations in cAVB dogs should increase awareness regarding proarrhythmic effects of widely used Evodia extracts.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Alcaloides/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Medicamentos de Ervas Chinesas/efeitos adversos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Evodia , Alcaloides/química , Alcaloides/farmacologia , Animais , Arritmias Cardíacas/metabolismo , Cães , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Evodia/química , Feminino , Células HEK293 , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , XenopusRESUMO
BACKGROUND: The electrically remodeled canine heart after chronic AV block (CAVB) has a high susceptibility for drug-induced torsade de pointes (TdP) arrhythmias. Although focal mechanisms have been considered for initiation, there is still controversy about whether reentry is the dominant mechanism for perpetuation of TdP. In this animal model with known nonuniform prolongation of repolarization, the mechanism of perpetuation of TdP arrhythmia was explored. METHODS AND RESULTS: Seventeen TdP-sensitive CAVB and 10 sinus rhythm (SR) dogs were studied. In 6 animals, 66 needle electrodes were evenly distributed transmurally to record 240 unipolar local electrograms simultaneously. Activation times and activation recovery intervals were determined before and during ibutilide-induced TdP. In 12 CAVB and 9 SR dogs, left ventricular (LV) and right ventricular (RV) epicardial electrograms were recorded with a 208-point multiterminal grid electrode allowing conduction velocity (CV) and ventricular effective refractory period (VERP) measurements. Biopsy specimens were processed for connexin43 (Cx43) expression and collagen content. Ventricular myocytes were isolated to determine sodium current (I(Na)) density and cell dimensions. Computer simulations were used to assess the effects of changes therein. In CAVB, VERP and ARI were increased, whereas CV was unaltered in LV. Transversal but not longitudinal CV was increased in RV. I(Na) was reduced by 37% in LV but unaltered in RV. LV and RV cell size were increased, but collagen and Cx43 content remained unchanged. Simulations showed increase in CV of RV as a consequence of increased cell size at normal I(Na). Ibutilide increased ARI, ERP, and maximal transmural dispersion of ERP (45 ± 25 to 120 ± 65 ms; P < 0.05). Twenty-eight of 47 episodes of self-terminating TdP (43 ± 72 beats) were analyzed. The majority (> 90%) of beats were focal; reentry was observed only occasionally. CONCLUSIONS: Focal activity is the dominant mechanism involved in perpetuation of ibutilide-induced TdP in CAVB dogs based on detailed 3D mapping. This conclusion is in line with unaltered conduction and documented increase in VERP.