Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Thromb Hemost ; 49(5): 488-506, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36206768

RESUMO

The process of platelet aggregation is often influenced by several factors including sex and age. A literature review confirmed the existence of sex-related differences in platelet aggregation. Although 68 out of 78 papers found such differences, there are still some controversies regarding these differences, which can be due to multiple factors (age, trigger, concomitant disease, sample handling, etc.). These outcomes are discussed in line with novel results obtained from a local study, in which blood samples from a total of 53 overall healthy women and men with ages ranging from 20 to 66 years were collected. Aggregation was induced with seven different triggers (ristocetin, thrombin receptor activating peptide 6 [TRAP-6], arachidonic acid [AA], platelet-activating factor 16 [PAF-16], ADP, collagen, or thromboxane A2 analog U-46619) ex vivo. In addition, three FDA-approved antiplatelet drugs (vorapaxar, ticagrelor, or acetylsalicylic acid [ASA]) were also tested. In general, women had higher aggregation responses to some agonists (ADP, TRAP), as well as lower benefit from inhibitors (ASA, vorapaxar). The aggregatory responses to AA and TRAP decreased with age in both sexes, while responses to ADP, U-46619, and PAF were affected by age only in women. In conclusion, more studies are needed to decipher the biological importance of sex-related differences in platelet aggregation in part to enable personalized antiplatelet treatment.


Assuntos
Inibidores da Agregação Plaquetária , Agregação Plaquetária , Masculino , Humanos , Feminino , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Lactonas/farmacologia , Aspirina/uso terapêutico , Ácido Araquidônico/farmacologia , Difosfato de Adenosina/farmacologia , Plaquetas
2.
J Agric Food Chem ; 70(20): 6134-6144, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35544338

RESUMO

The current chelation therapy has several drawbacks, including lack of selectivity, which could lead to trace metal depletion. Consequently, the proper function of metalloenzymes can be disrupted. Flavonoids possess chelating properties and hence interfere with the homeostasis of essential metals. We focused on zinc, an important trace metal required for the function of many enzymes and transcription factors. After making an initial evaluation of the Zn2+-chelating properties of a series of flavonoids, the effect of these compounds on various zinc-containing enzymes was also investigated. We performed enzyme inhibition assays spectrophotometrically using yeast and equine alcohol dehydrogenases and bovine glutamate dehydrogenase. Nine of the 21 flavonoids tested were capable of chelating Zn2+. Baicalein and 3-hydroxyflavone were the most potent Zn2+ chelators under slightly acidic and neutral pH conditions. This chelation was also confirmed by the ability to reverse Zn2+-induced enzymatic inhibition of bovine glutamate dehydrogenase. Although some flavonoids were also able to inhibit zinc-containing alcohol dehydrogenases, this inhibition was likely not caused by Zn2+ chelation. Luteolin was a relatively potent inhibitor of these enzymes regardless of the presence of Zn2+. Docking studies confirmed the binding of active flavonoids to equine alcohol dehydrogenase without any significant interaction with the catalytic zinc.


Assuntos
Flavonoides , Zinco , Álcool Desidrogenase/metabolismo , Animais , Bovinos , Quelantes/química , Glutamato Desidrogenase , Cavalos , Metais/metabolismo , Zinco/metabolismo
3.
Mol Nutr Food Res ; 63(20): e1900261, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31343835

RESUMO

SCOPE: Intake of flavonoids from the diet can be substantial, and epidemiological studies suggest that these compounds can decrease the incidence of cardiovascular diseases by involvement with increased platelet aggregation. Although parent flavonoids possess antiplatelet effects, the clinical importance is disputable due to their very low bioavailability. Most of them are metabolized by human colon bacteria to smaller phenolic compounds, which reach higher plasma concentrations than the parent flavonoids. In this study, a series of 29 known flavonoid metabolites is tested for antiplatelet potential. METHODS AND RESULTS: Four compounds appear to have a biologically relevant antiplatelet effect using whole human blood. 4-Methylcatechol (4-MC) is clearly the most efficient being about 10× times more active than clinically used acetylsalicylic acid. This ex vivo effect is also confirmed using a potentially novel in-vivo-like ex ovo hen's egg model of thrombosis, where 4-MC significantly increases the survival of the eggs. The mechanism of action is studied and it seems that it is mainly based on the influence on intracellular calcium signaling. CONCLUSION: This study shows that some flavonoid metabolites formed by human microflora have a strong antiplatelet effect. This information can help to explain the antiplatelet potential of orally given flavonoids.


Assuntos
Catecóis/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores da Agregação Plaquetária/farmacologia , Animais , Ácido Araquidônico/farmacologia , Embrião de Galinha , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Agregação Plaquetária/efeitos dos fármacos , Pirogalol/farmacologia , Serotonina/metabolismo , Trombose/tratamento farmacológico , Tromboxano-A Sintase/antagonistas & inibidores
4.
Phytomedicine ; 62: 152974, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31181402

RESUMO

BACKGROUND: Isoflavonoids seem to possess positive cardiovascular and other beneficial effects in humans. HYPOTHESIS: Their low bioavailability, however, indicates that small isoflavonoid metabolites formed by human microflora can significantly contribute to these activities. STUDY DESIGN: Testing antiplatelet activity ex vivo in human blood and interaction with transition metals in vitro. METHODS: The effect on platelet aggregation induced by different triggers (arachidonic acid, collagen, ADP, TRAP-6), and interactions with transition metals (iron and copper chelation/reduction) were evaluated against four isoflavonoid-specific metabolites: S-equol; O-desmethylangolensin; 2-(4-hydroxyphenyl) propionic acid (HPPA); and 4-ethylphenol. RESULTS: S-equol, 4-ethylphenol and O-desmethylangolensin blocked platelet aggregation induced by arachidonic acid and collagen. S-equol even matched the potency of acetylsalicylic acid in the case of collagen, which is the most physiological inducer of aggregation. Moreover, their effects in general seemed to be biologically relevant and attainable at achievable plasma concentrations, with the exception of HPPA which was ineffective. While only O-desmethylangolensin mildly chelated iron and copper, all four compounds markedly reduced cupric ions. Their direct free radical scavenging effects seem to have little clinical relevance. CONCLUSION: This study has shown that S-equol, O-desmethylangolensin and 4-ethylphenol, arising from isoflavonoid intake, can have biologically relevant effects on platelet aggregation.


Assuntos
Cobre/metabolismo , Equol/metabolismo , Ferro/metabolismo , Isoflavonas/farmacologia , Fenóis/metabolismo , Aspirina/farmacologia , Disponibilidade Biológica , Plaquetas/efeitos dos fármacos , Humanos , Isoflavonas/metabolismo , Masculino , Agregação Plaquetária/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA