Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473759

RESUMO

Osteoarthritis (OA) causes joint pain and disability due to the abnormal production of inflammatory cytokines and reactive oxygen species (ROS) in chondrocytes, leading to cell death and cartilage matrix destruction. Selenium (Se) intake can protect cells against oxidative damage. It is still unknown whether Se supplementation is beneficial for OA. This study investigated the effects of Se on sodium iodoacetate (MIA)-imitated OA progress in human chondrocyte cell line (SW1353 cells) and rats. The results showed that 0.3 µM of Se treatment could protect SW1353 cells from MIA-induced damage by the Nrf2 pathway by promoting the gene expression of glutathione-synthesis-related enzymes such as the glutamate-cysteine ligase catalytic subunit, the glutamate-cysteine ligase modifier subunit, and glutathione synthetase. In addition, glutathione, superoxide dismutase, glutathione peroxidase, and glutathione reductase expressions are also elevated to eliminate excessive ROS production. Moreover, Se could downregulate NF-κB, leading to a decrease in cytokines, matrix proteases, and glycosaminoglycans. In the rats, MIA-induced cartilage loss was lessened after 2 weeks of Se supplementation by oral gavage; meanwhile, glutathione synthesis was increased, and the expressions of pro-inflammatory cytokines were decreased. These results suggest that Se intake is beneficial for OA due to its effects of decreasing cartilage loss by enhancing antioxidant capacity and reducing inflammation.


Assuntos
Cartilagem Articular , Osteoartrite , Selênio , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Condrócitos/metabolismo , Selênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Glutationa/metabolismo , Cartilagem Articular/metabolismo
2.
Nutrients ; 10(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641501

RESUMO

Osteoarthritis (OA) is an age-related degenerative joint disease characterized by high oxidative stress, chondrocyte death and cartilage damage. Zinc has been implicated in the antioxidant capacity of the cell, and its deficiency might inhibit chondrocyte proliferation. The present study examined the potential of zinc as a preventive supplement against OA using the in vitro chondrosarcoma cell line SW1353 and an in vivo Wistar rat model to mimic OA progress induced by monosodium iodoacetate (MIA). The results demonstrated that, in SW1353 cells, 5 µM MIA exposure increased oxidative stress and decreased the expression of GPx1 and Mn-SOD but still increased GSH levels and HO-1 expression and enhanced the expression of interleukin (IL)-10, IL-1ß, and matrix metalloproteinase (MMP)-13. Zinc addition could block these changes. Besides, the expression of Nrf2 and phosphorylated (p)-Akt was dramatically increased, implicating the p-Akt/Nrf2 pathway in the effects of zinc on MIA-treated cells. A rat model achieved similar results as those of cell culture, and 1.6 mg/kg/day of zinc supplementation is sufficient to prevent OA progress, while 8.0 mg/kg/day of zinc supplementation does not have a better effect. These findings indicate that zinc supplementation exerts a preventive effect with respect to MIA-induced OA progress.


Assuntos
Antioxidantes/farmacologia , Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Interleucinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/prevenção & controle , Sulfato de Zinco/farmacologia , Animais , Antioxidantes/metabolismo , Cartilagem Articular/enzimologia , Cartilagem Articular/patologia , Linhagem Celular Tumoral , Condrócitos/enzimologia , Condrócitos/patologia , Citoproteção , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Osteoartrite/enzimologia , Osteoartrite/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
3.
Nutrition ; 29(1): 250-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22858193

RESUMO

OBJECTIVE: Several studies have shown that soy isoflavones have estrogen-like activities and might constitute an alternative to hormone replacement treatment. The present study investigated the effects of soy isoflavones alone and combined with vitamin D3 on prevention of bone loss. METHODS: Sprague-Dawley rats were sham-operated (n = 8) or ovariectomized (OVX; n = 40), and then the OVX rats were randomly assigned to five groups that were untreated or treated for 14 wk with vitamin D3, 17ß-estradiol, soy isoflavone extract (SIE), or vitamin D3 plus SIE. The effects of the isoflavones and 1α,25(OH)(2)D(3) on cultured osteoblasts and osteoclasts also were investigated. RESULTS: In OVX rats, the bone mineral density and trabecular bone volume loss were improved by 17ß-estradiol, SIE, or SIE plus vitamin D3 treatment. SIE treatment was more effective than vitamin D3 or 17ß-estradiol in inhibiting increases in serum tumor necrosis factor-α levels and osteoblast osteoprotegerin expression. SIE plus vitamin D3 was more effective in increasing osterix expression than each alone. Bone cell cultures showed that the isoflavones induced preosteoblasts to differentiate into osteoblasts and increased osteoblast mineralization. Isoflavones inhibited preosteoclasts and osteoclast proliferation and decreased osteoclast resorption. The combination of isoflavones plus 1α,25(OH)(2)D(3) showed additive effects on the increase in cell proliferation of cultured preosteoblasts. CONCLUSION: Treatment with soy isoflavones might be an alternative to hormone replacement therapy in decreasing bone loss from postmenopausal estrogen deficiency. In addition, there are further effects on increasing transcription factor osterix expression and preosteoblast proliferation when these were combined with vitamin D3.


Assuntos
Colecalciferol/administração & dosagem , Isoflavonas/administração & dosagem , Osteoporose/tratamento farmacológico , Fosfatase Alcalina/sangue , Animais , Densidade Óssea/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Estradiol/administração & dosagem , Feminino , Humanos , Interleucina-1beta/sangue , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteocalcina/sangue , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoporose/metabolismo , Osteoporose/patologia , Ovariectomia , Fitoestrógenos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Glycine max/química , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA