Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1343738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633754

RESUMO

Background: Glycine is an integral component of the human detoxification system as it reacts with potentially toxic exogenous and endogenously produced compounds and metabolites via the glycine conjugation pathway for urinary excretion. Because individuals with obesity have reduced glycine availability, this detoxification pathway may be compromised. However, it should be restored after bariatric surgery because of increased glycine production. Objective: To examine the impact of obesity-associated glycine deficiency on the glycine conjugation pathway. We hypothesize that the synthesis rates of acylglycines from endogenous and exogenous sources are significantly reduced in individuals with obesity but increase after bariatric surgery. Methods: We recruited 21 participants with class III obesity and 21 with healthy weight as controls. At baseline, [1,2-13C2] glycine was infused to study the glycine conjugation pathway by quantifying the synthesis rates of several acylglycines. The same measurements were repeated in participants with obesity six months after bariatric surgery. Data are presented as mean ± standard deviation, and p-value< 0.05 is considered statistically significant. Results: Baseline data of 20 participants with obesity were first compared to controls. Participants with obesity were significantly heavier than controls (mean BMI 40.5 ± 7.1 vs. 20.8 ± 2.1 kg/m2). They had significantly lower plasma glycine concentration (168 ± 30 vs. 209 ± 50 µmol/L) and slower absolute synthesis rates of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Pre- and post-surgery data were available for 16 participants with obesity. Post-surgery BMI decreased from 40.9 ± 7.3 to 31.6 ± 6.0 kg/m2. Plasma glycine concentration increased from 164 ± 26 to 212 ± 38 µmol/L) and was associated with significantly higher rates of excretion of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Benzoic acid (a xenobiotic dicarboxylic acid) is excreted as benzoylglycine; its synthesis rate was significantly slower in participants with obesity but increased after bariatric surgery. Conclusion: Obesity-associated glycine deficiency impairs the human body's ability to eliminate endogenous and exogenous metabolites/compounds via the glycine conjugation pathway. This impairment is ameliorated when glycine supply is restored after bariatric surgery. These findings imply that dietary glycine supplementation could treat obesity-associated metabolic complications due to the accumulation of intramitochondrial toxic metabolites. Clinical trial registration: https://clinicaltrials.gov/study/NCT04660513, identifier NCT04660513.


Assuntos
Cirurgia Bariátrica , Ácido Benzoico , Humanos , Ácido Benzoico/metabolismo , Glicina , Hipuratos/metabolismo , Obesidade , Estudos de Casos e Controles
2.
J Gerontol A Biol Sci Med Sci ; 78(1): 75-89, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35975308

RESUMO

BACKGROUND: Elevated oxidative stress (OxS), mitochondrial dysfunction, and hallmarks of aging are identified as key contributors to aging, but improving/reversing these defects in older adults (OA) is challenging. In prior studies, we identified that deficiency of the intracellular antioxidant glutathione (GSH) could play a role and reported that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improved GSH deficiency, OxS, mitochondrial fatty-acid oxidation (MFO), and insulin resistance (IR). To test whether GlyNAC supplementation in OA could improve GSH deficiency, OxS, mitochondrial dysfunction, IR, physical function, and aging hallmarks, we conducted a placebo-controlled randomized clinical trial. METHODS: Twenty-four OA and 12 young adults (YA) were studied. OA was randomized to receive either GlyNAC (N = 12) or isonitrogenous alanine placebo (N = 12) for 16-weeks; YA (N = 12) received GlyNAC for 2-weeks. Participants were studied before, after 2-weeks, and after 16-weeks of supplementation to assess GSH concentrations, OxS, MFO, molecular regulators of energy metabolism, inflammation, endothelial function, IR, aging hallmarks, gait speed, muscle strength, 6-minute walk test, body composition, and blood pressure. RESULTS: Compared to YA, OA had GSH deficiency, OxS, mitochondrial dysfunction (with defective molecular regulation), inflammation, endothelial dysfunction, IR, multiple aging hallmarks, impaired physical function, increased waist circumference, and systolic blood pressure. GlyNAC (and not placebo) supplementation in OA improved/corrected these defects. CONCLUSION: GlyNAC supplementation in OA for 16-weeks was safe and well-tolerated. By combining the benefits of glycine, NAC and GSH, GlyNAC is an effective nutritional supplement that improves and reverses multiple age-associated abnormalities to promote health in aging humans. Clinical Trials Registration Number: NCT01870193.


Assuntos
Acetilcisteína , Resistência à Insulina , Humanos , Camundongos , Animais , Idoso , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Glicina/metabolismo , Promoção da Saúde , Estresse Oxidativo , Envelhecimento/fisiologia , Glutationa , Suplementos Nutricionais , Resistência à Insulina/fisiologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mitocôndrias/metabolismo
3.
Clin Transl Med ; 11(3): e372, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33783984

RESUMO

BACKGROUND: Oxidative stress (OxS) and mitochondrial dysfunction are implicated as causative factors for aging. Older adults (OAs) have an increased prevalence of elevated OxS, impaired mitochondrial fuel-oxidation (MFO), elevated inflammation, endothelial dysfunction, insulin resistance, cognitive decline, muscle weakness, and sarcopenia, but contributing mechanisms are unknown, and interventions are limited/lacking. We previously reported that inducing deficiency of the antioxidant tripeptide glutathione (GSH) in young mice results in mitochondrial dysfunction, and that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improves naturally-occurring GSH deficiency, mitochondrial impairment, OxS, and insulin resistance. This pilot trial in OA was conducted to test the effect of GlyNAC supplementation and withdrawal on intracellular GSH concentrations, OxS, MFO, inflammation, endothelial function, genotoxicity, muscle and glucose metabolism, body composition, strength, and cognition. METHODS: A 36-week open-label clinical trial was conducted in eight OAs and eight young adults (YAs). After all the participants underwent an initial (pre-supplementation) study, the YAs were released from the study. OAs were studied again after GlyNAC supplementation for 24 weeks, and GlyNAC withdrawal for 12 weeks. Measurements included red-blood cell (RBC) GSH, MFO; plasma biomarkers of OxS, inflammation, endothelial function, glucose, and insulin; gait-speed, grip-strength, 6-min walk test; cognitive tests; genomic-damage; glucose-production and muscle-protein breakdown rates; and body-composition. RESULTS: GlyNAC supplementation for 24 weeks in OA corrected RBC-GSH deficiency, OxS, and mitochondrial dysfunction; and improved inflammation, endothelial dysfunction, insulin-resistance, genomic-damage, cognition, strength, gait-speed, and exercise capacity; and lowered body-fat and waist-circumference. However, benefits declined after stopping GlyNAC supplementation for 12 weeks. CONCLUSIONS: GlyNAC supplementation for 24-weeks in OA was well tolerated and lowered OxS, corrected intracellular GSH deficiency and mitochondrial dysfunction, decreased inflammation, insulin-resistance and endothelial dysfunction, and genomic-damage, and improved strength, gait-speed, cognition, and body composition. Supplementing GlyNAC in aging humans could be a simple and viable method to promote health and warrants additional investigation.


Assuntos
Acetilcisteína/farmacologia , Cognição/efeitos dos fármacos , Glutationa/efeitos dos fármacos , Glicina/farmacologia , Inflamação/tratamento farmacológico , Força Muscular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Dano ao DNA/efeitos dos fármacos , Suplementos Nutricionais , Endotélio/efeitos dos fármacos , Feminino , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Avaliação Geriátrica , Glicina/administração & dosagem , Glicinérgicos/administração & dosagem , Glicinérgicos/farmacologia , Humanos , Resistência à Insulina , Masculino , Mitocôndrias/efeitos dos fármacos , Projetos Piloto , Adulto Jovem
4.
Reprod Biol Endocrinol ; 17(1): 12, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654812

RESUMO

BACKGROUND: Detrimental exposures during pregnancy have been implicated in programming offspring to develop permanent changes in physiology and metabolism, increasing the risk for developing diseases in adulthood such as hypertension, diabetes, heart disease and obesity. This study investigated the effects of protein restriction on the metabolism of amino acids within the oocyte, liver, and whole organism in a rat model as well as effects on mitochondrial ultrastructure and function in the cumulus oocyte complex. METHODS: Wistar outbred female rats 8-11 weeks of age (n = 24) were assigned to three isocaloric dietary groups, including control (C), low protein (LP) and low protein supplemented with folate (LPF). Animals were superovulated and 48 h later underwent central catheterization. Isotopic tracers of 1-13C-5C2H3-methionine, 2H2-cysteine, U-13C3-cysteine and U-13C3-serine were administered by a 4 h prime-constant rate infusion. After sacrifice, oocytes were denuded of cumulus cells and liver specimens were obtained. RESULTS: Oocytes demonstrated reduced serine flux in LP vs. LPF (p < 0.05), reduced cysteine flux in LP and LPF vs. C (p < 0.05), and a trend toward reduced transsulfuration in LP vs. C and LPF. Folic acid supplementation reversed observed effects on serine flux and transsulfuration. Preovulatory protein restriction increased whole-body methionine transmethylation, methionine transsulfuration and the flux of serine in LP and LPF vs. C (p = 0.003, p = 0.002, p = 0.005). The concentration of glutathione was increased in erythrocytes and liver in LP and LPF vs. C (p = 0.003 and p = 0.0003). Oocyte mitochondrial ultrastructure in LP and LPF had increased proportions of abnormal mitochondria vs. C (p < 0.01 and p < 0.05). Cumulus cell mitochondrial ultrastructure in LP and LPF groups had increased proportions of abnormal mitochondria vs. C (p < 0.001 and p < 0.05). Preovulatory protein restriction altered oocyte expression of Drp1, Opa-1, Mfn1/2, Parl and Ndufb6 (p < 0.05) and Hk2 (p < 0.01), which are genes involved in mitochondrial fission (division) and fusion, mitochondrial apoptotic mechanisms, respiratory electron transport and glucose metabolism. CONCLUSIONS: Preovulatory protein restriction resulted in altered amino acid metabolism, abnormal cumulus oocyte complex mitochondrial ultrastructure and differential oocyte expression of genes related to mitochondrial biogenesis.


Assuntos
Aminoácidos/metabolismo , Dieta com Restrição de Proteínas , Ácido Fólico/farmacologia , Mitocôndrias/metabolismo , Oócitos/efeitos dos fármacos , Animais , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Feminino , Fase Folicular , Expressão Gênica/efeitos dos fármacos , Cinética , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Oócitos/metabolismo , Ratos Wistar , Complexo Vitamínico B
5.
J Nutr ; 147(6): 1094-1103, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28446631

RESUMO

Background: Low-quality dietary protein intake and vitamin B-12 deficiency could interact to decrease methionine transmethylation and remethylation rates during pregnancy and may affect epigenetic modifications of the fetal genome.Objective: The objective of this randomized, partially open-labeled intervention trial was to examine the effect of supplemental high-quality protein and vitamin B-12 on third-trimester methionine kinetics in pregnant Indian women with a low vitamin B-12 status.Methods: Pregnant women with low serum vitamin B-12 concentrations (<200 pmol/L) were randomly assigned to 1 of 3 groups: the first group received balanced protein-energy supplementation of 500 mL milk/d plus a 10-µg vitamin B-12 tablet/d (M+B-12 group; n = 30), the second group received milk (500 mL/d) plus a placebo tablet (M+P group; n = 30), and the third group received a placebo tablet alone (P group; n = 33). Third-trimester fasting plasma amino acid kinetics were measured by infusing 1-13C,methyl-2H3-methionine, ring-2H5-phenylalanine, ring-2H4-tyrosine,1-13C-glycine, and 2,3,3-2H3,15N-serine in a subset of participants. Placental mRNA expression of genes involved in methionine pathways, placental long interspersed nuclear elements 1 (LINE-1) methylation, and promoter methylation levels of vascular endothelial growth factor (VEGF) were analyzed.Results: Remethylation rates in the M+B-12, M+P, and P groups were 5.1 ± 1.7, 4.1 ± 1.0, and, 5.0 ± 1.4 µmol ⋅ kg-1 ⋅ h-1, respectively (P = 0.057), such that the percentage of transmethylation remethylated to methionine tended to be higher in the M+B-12 group (49.5% ± 10.5%) than in the M+P group (42.3% ± 8.4%; P = 0.053) but neither differed from the P group (44.2% ± 8.1%; P > 0.1). Placental mRNA expression, LINE-1, and VEGF promoter methylation did not differ between groups.Conclusions: Combined vitamin B-12 and balanced protein-energy supplementation increased the homocysteine remethylation rate in late pregnancy. Thus, vitamin B-12 along with balanced protein-energy supplementation is critical for optimal functioning of the methionine cycle in the third trimester of pregnancy in Indian women with low serum vitamin B-12 in early pregnancy. This trial was registered at clinicaltrials.gov as CTRI/2016/01/006578.


Assuntos
Proteínas Alimentares/farmacologia , Ingestão de Energia , Homocisteína/metabolismo , Metionina/metabolismo , Complicações na Gravidez/metabolismo , Deficiência de Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Adulto , Aminoácidos/metabolismo , Animais , Feminino , Alimentos Fortificados , Humanos , Índia , Elementos Nucleotídeos Longos e Dispersos , Fenômenos Fisiológicos da Nutrição Materna , Metilação , Placenta/metabolismo , Gravidez , Complicações na Gravidez/dietoterapia , Regiões Promotoras Genéticas , Fator A de Crescimento do Endotélio Vascular/genética , Vitamina B 12/sangue , Deficiência de Vitamina B 12/sangue , Deficiência de Vitamina B 12/dietoterapia , Adulto Jovem
6.
Mol Genet Metab ; 117(4): 407-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851065

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. In this study we used stable isotope infusion techniques to assess NO production in children with MELAS syndrome and healthy pediatric controls. We also assessed the effect of oral arginine and citrulline supplementations on NO production in children with MELAS syndrome. When compared to control subjects, children with MELAS syndrome were found to have lower NO production, arginine flux, plasma arginine, and citrulline flux. In children with MELAS syndrome, arginine supplementation resulted in increased NO production, arginine flux, and arginine concentration. Citrulline supplementation resulted in a greater increase of these parameters. Additionally, citrulline supplementation was associated with a robust increase in citrulline concentration and flux and de novo arginine synthesis rate. The greater effect of citrulline in increasing NO production is due to its greater ability to increase arginine availability particularly in the intracellular compartment in which NO synthesis takes place. This study, which is the first one to assess NO metabolism in children with mitochondrial diseases, adds more evidence to the notion that NO deficiency occurs in MELAS syndrome, suggests a better effect for citrulline because of its greater role as NO precursor, and indicates that impaired NO production occurs in children as well as adults with MELAS syndrome. Thus, the initiation of treatment with NO precursors may be beneficial earlier in life. Controlled clinical trials to assess the therapeutic effects of arginine and citrulline on clinical complications of MELAS syndrome are needed.


Assuntos
Arginina/administração & dosagem , Citrulina/administração & dosagem , Suplementos Nutricionais , Síndrome MELAS/dietoterapia , Síndrome MELAS/metabolismo , Óxido Nítrico/biossíntese , Adolescente , Arginina/farmacocinética , Estudos de Casos e Controles , Criança , Pré-Escolar , Citrulina/farmacocinética , Feminino , Humanos , Síndrome MELAS/diagnóstico , Masculino , Resultado do Tratamento
7.
J Nutr ; 146(2): 218-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764317

RESUMO

BACKGROUND: In India, the prevalence of low birth weight is high in women with a low body mass index (BMI), suggesting that underweight women are not capable of providing adequate energy and protein for fetal growth. Furthermore, as pregnancy progresses, there is increased need to provide methyl groups for methylation reactions associated with the synthesis of new proteins and, unlike normal-BMI American women, low-BMI Indian women are unable to increase methionine transmethylation and remethylation rates as pregnancy progresses from trimester 1 to 3. This also negatively influences birth weight. OBJECTIVE: The aim was to determine the effect of dietary supplementation with energy and protein from 12 ± 1 wk of gestation to time of delivery compared with no supplement on pregnancy outcomes, protein kinetics, and the fluxes of the methyl group donors serine and glycine. METHODS: Protein kinetics and serine and glycine fluxes were measured by using standard stable isotope tracer methods in the fasting and postprandial states in 24 pregnant women aged 22.9 ± 0.7 y with low BMIs [BMI (in kg/m(2)) ≤18.5] at 12 ± 1 wk (trimester 1) and 30 ± 1 wk (trimester 3) of gestation. After the first measurement, subjects were randomly assigned to either receive the supplement (300 kcal/d, 15 g protein/d) or no supplement. RESULTS: Supplementation had no significant effect on any variable of pregnancy outcome, and except for fasting state decreases in leucine flux (125 ± 7.14 compared with 113 ± 5.06 µmol ⋅ kg(-1) ⋅ h(-1); P = 0.04) and nonoxidative disposal (110 ± 6.97 compared with 101 ± 3.69 µmol ⋅ kg(-1) ⋅ h(-1); P = 0.02) from trimesters 1 to 3, it had no effect on any other leucine kinetic variable or urea, glycine, and serine fluxes. CONCLUSION: We conclude that in Indian women with a low BMI, supplementation with energy and protein from week 12 of pregnancy to time of delivery does not improve pregnancy outcome, whole-body protein kinetics, or serine and glycine fluxes.


Assuntos
Aminoácidos/metabolismo , Peso ao Nascer/efeitos dos fármacos , Proteínas Alimentares/farmacologia , Suplementos Nutricionais , Ingestão de Energia/fisiologia , Resultado da Gravidez , Magreza/complicações , Adulto , Índice de Massa Corporal , Proteínas Alimentares/metabolismo , Feminino , Humanos , Índia , Recém-Nascido de Baixo Peso , Recém-Nascido , Cinética , Metilação , Gravidez , Complicações na Gravidez , Trimestres da Gravidez , Adulto Jovem
8.
Am J Clin Nutr ; 99(5): 1052-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598154

RESUMO

BACKGROUND: We have shown that a low glutathione concentration and synthesis rate in erythrocytes are associated with a shortage of protein-derived cysteine in children with edematous severe acute malnutrition (SAM). OBJECTIVE: We tested the hypothesis that methionine supplementation may increase protein-derived cysteine and upregulate cysteine synthesis, thereby improving glutathione synthesis during the early treatment of edematous SAM. DESIGN: The cysteine flux, its de novo synthesis and release from protein breakdown, and erythrocyte glutathione synthesis rate were measured in 12 children with edematous SAM in the fed state by using stable isotope tracers at 3 clinical phases as follows: 3 ± 1 d (±SE) [clinical phase 1 (CP1)], 8 ± 1 d [clinical phase 2 (CP2)], and 14 ± 2 d (clinical phase 3) after admission. Subjects were randomly assigned to receive equimolar supplements (0.5 mmol ⋅ kg(-1) ⋅ d(-1)) of methionine or alanine (control) immediately after CP1. RESULTS: In the methionine compared with the alanine group, cysteine flux derived from protein breakdown was faster at CP2 than CP1 (P < 0.05), and the change in plasma cysteine concentration from CP1 to CP2 was greater (P < 0.05). However, there was no evidence of a difference in cysteine de novo synthesis and its total flux or erythrocyte glutathione synthesis rate and concentration between groups. CONCLUSIONS: Methionine supplementation increased cysteine flux from body protein but had no significant effect on glutathione synthesis rates. Although cysteine is made from methionine, increased dietary cysteine may be necessary to partially fulfill its demand in edematous SAM because glutathione synthesis rates and concentrations were less than previous values shown at full recovery. This study was registered at clinicaltrials.gov as NCT00473031.


Assuntos
Alanina/administração & dosagem , Cisteína/biossíntese , Suplementos Nutricionais , Glutationa/biossíntese , Kwashiorkor/tratamento farmacológico , Metionina/administração & dosagem , Cisteína/sangue , Dieta , Eritrócitos/metabolismo , Glutationa/sangue , Humanos , Lactente , Isótopos/metabolismo , Kwashiorkor/sangue , Kwashiorkor/complicações , Regulação para Cima
9.
J Nutr ; 144(5): 660-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24647391

RESUMO

Although 2 earlier studies reported that aromatic amino acid (AAA) supplementation of children with severe acute malnutrition (SAM) improved whole-body protein anabolism during the early postadmission (maintenance) phase of rehabilitation, it is not known whether this positive effect was maintained during the catch-up growth and recovery phases of treatment. This study aimed to determine whether supplementation with an AAA cocktail (330 mg · kg(-1) · d(-1)) vs. isonitrogenous Ala would improve measures of protein kinetics in 22 children, aged 4-31 mo, during the catch-up growth and recovery phases of treatment for SAM. Protein kinetics were assessed by measuring leucine, phenylalanine, and urea kinetics with the use of standard stable isotope tracer methods in the fed state. Supplementation started at the end of the maintenance period when the children were clinically/metabolically stable and continued up to full nutritional recovery. Three experiments were performed: at the end of maintenance (at ∼13 d postadmission), at mid-catch-up growth (at ∼23 d post- admission when the children had replenished 50% of their weight deficit), and at recovery (at ∼48 d postadmission when they had achieved at least 90% weight for length). Children in the AAA group had significantly faster protein synthesis compared with those in the Ala group at mid-catch-up growth (101 ± 10 vs. 72 ± 7 µmol phenylalanine · kg(-1) · h(-1); P < 0.05) and better protein balance at mid-catch-up growth (49 ± 5 vs. 30 ± 2 µmol phenylalanine · kg(-1) · h(-1); P < 0.05) and at recovery (37 ± 8 vs. 11 ± 3 µmol phenylalanine · kg(-1) · h(-1); P < 0.05). We conclude that dietary supplementation with AAA accelerates net protein synthesis in children during nutritional rehabilitation for SAM.


Assuntos
Aminoácidos Aromáticos/administração & dosagem , Suplementos Nutricionais , Kwashiorkor/dietoterapia , Desnutrição Proteico-Calórica/dietoterapia , Doença Aguda , Adolescente , Peso Corporal , Criança , Feminino , Humanos , Isótopos , Kwashiorkor/reabilitação , Masculino , Modelos Biológicos , Biossíntese de Proteínas , Desnutrição Proteico-Calórica/reabilitação , Índice de Gravidade de Doença , Resultado do Tratamento , Aumento de Peso
10.
J Clin Endocrinol Metab ; 99(1): 169-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24081740

RESUMO

BACKGROUND: HIV-infected patients are reported to have impaired oxidation of fatty acids despite increased availability, suggesting a mitochondrial defect. We investigated whether diminished levels of a key mitochondrial antioxidant, glutathione (GSH), was contributing to defective fatty acid oxidation in older HIV-infected patients, and if so, the metabolic mechanisms contributing to GSH deficiency in these patients. METHODS: In an open-label design, 8 older GSH-deficient HIV-infected males were studied before and after 14 days of oral supplementation with the GSH precursors cysteine and glycine. A combination of stable-isotope tracers, calorimetry, hyperinsulinemic-euglycemic clamp, and dynamometry were used to measure GSH synthesis, fasted and insulin-stimulated (fed) mitochondrial fuel oxidation, insulin sensitivity, body composition, anthropometry, forearm-muscle strength, and lipid profiles. RESULTS: Impaired synthesis contributed to GSH deficiency in the patients and was restored with cysteine plus glycine supplementation. GSH improvement was accompanied by marked improvements in fasted and fed mitochondrial fuel oxidation. Associated benefits included improvements in insulin sensitivity, body composition, anthropometry, muscle strength, and dyslipidemia. CONCLUSIONS: This work identifies 2 novel findings in older HIV-infected patients: 1) diminished synthesis due to decreased availability of cysteine and glycine contributes to GSH deficiency and can be rapidly corrected by dietary supplementation of these precursors and 2) correction of GSH deficiency is associated with improvement of mitochondrial fat and carbohydrate oxidation in both fasted and fed states and with improvements in insulin sensitivity, body composition, and muscle strength. The role of GSH on ameliorating metabolic complications in older HIV-infected patients warrants further investigation.


Assuntos
Composição Corporal/efeitos dos fármacos , Cisteína/administração & dosagem , Glutationa/metabolismo , Glicina/administração & dosagem , Infecções por HIV/metabolismo , Resistência à Insulina , Mitocôndrias/efeitos dos fármacos , Fatores Etários , Fármacos Anti-HIV/uso terapêutico , Suplementos Nutricionais , Glutationa/deficiência , Infecções por HIV/dietoterapia , Infecções por HIV/tratamento farmacológico , HIV-1 , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos
11.
Mol Genet Metab ; 105(4): 607-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325939

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders. Although the pathogenesis of stroke-like episodes remains unclear, it has been suggested that mitochondrial proliferation may result in endothelial dysfunction and decreased nitric oxide (NO) availability leading to cerebral ischemic events. This study aimed to assess NO production in subjects with MELAS syndrome and the effect of the NO precursors arginine and citrulline. Using stable isotope infusion techniques, we assessed arginine, citrulline, and NO metabolism in control subjects and subjects with MELAS syndrome before and after arginine or citrulline supplementation. The results showed that subjects with MELAS had lower NO synthesis rate associated with reduced citrulline flux, de novo arginine synthesis rate, and plasma arginine and citrulline concentrations, and higher plasma asymmetric dimethylarginine (ADMA) concentration and arginine clearance. We conclude that the observed impaired NO production is due to multiple factors including elevated ADMA, higher arginine clearance, and, most importantly, decreased de novo arginine synthesis secondary to decreased citrulline availability. Arginine and, to a greater extent, citrulline supplementation increased the de novo arginine synthesis rate, the plasma concentrations and flux of arginine and citrulline, and NO production. De novo arginine synthesis increased markedly with citrulline supplementation, explaining the superior efficacy of citrulline in increasing NO production. The improvement in NO production with arginine or citrulline supplementation supports their use in MELAS and suggests that citrulline may have a better therapeutic effect than arginine. These findings can have a broader relevance for other disorders marked by perturbations in NO metabolism.


Assuntos
Arginina/administração & dosagem , Citrulina/administração & dosagem , Suplementos Nutricionais , Síndrome MELAS/dietoterapia , Síndrome MELAS/metabolismo , Óxido Nítrico/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA