Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(6): 2612-2626, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385662

RESUMO

Autism spectrum disorders caused by both genetic and environmental factors are strongly male-biased neuropsychiatric conditions. However, the mechanism underlying the sex bias of autism spectrum disorders remains elusive. Here, we use a mouse model in which the autism-linked gene Cttnbp2 is mutated to explore the potential mechanism underlying the autism sex bias. Autism-like features of Cttnbp2 mutant mice were assessed via behavioural assays. C-FOS staining identified sex-biased brain regions critical to social interaction, with their roles and connectivity then validated by chemogenetic manipulation. Proteomic and bioinformatic analyses established sex-biased molecular deficits at synapses, prompting our hypothesis that male-biased nutrient demand magnifies Cttnbp2 deficiency. Accordingly, intakes of branched-chain amino acids (BCAA) and zinc were experimentally altered to assess their effect on autism-like behaviours. Both deletion and autism-linked mutation of Cttnbp2 result in male-biased social deficits. Seven brain regions, including the infralimbic area of the medial prefrontal cortex (ILA), exhibit reduced neural activity in male mutant mice but not in females upon social stimulation. ILA activation by chemogenetic manipulation is sufficient to activate four of those brain regions susceptible to Cttnbp2 deficiency and consequently to ameliorate social deficits in male mice, implying an ILA-regulated neural circuit is critical to male-biased social deficits. Proteomics analysis reveals male-specific downregulated proteins (including SHANK2 and PSD-95, two synaptic zinc-binding proteins) and female-specific upregulated proteins (including RRAGC) linked to neuropsychiatric disorders, which are likely relevant to male-biased deficits and a female protective effect observed in Cttnbp2 mutant mice. Notably, RRAGC is an upstream regulator of mTOR that senses BCAA, suggesting that mTOR exerts a beneficial effect on females. Indeed, increased BCAA intake activates the mTOR pathway and rescues neuronal responses and social behaviours of male Cttnbp2 mutant mice. Moreover, mutant males exhibit greatly increased zinc demand to display normal social behaviours. Mice carrying an autism-linked Cttnbp2 mutation exhibit male-biased social deficits linked to specific brain regions, differential synaptic proteomes and higher demand for BCAA and zinc. We postulate that lower demand for zinc and BCAA are relevant to the female protective effect. Our study reveals a mechanism underlying sex-biased social defects and also suggests a potential therapeutic approach for autism spectrum disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Masculino , Feminino , Animais , Transtorno Autístico/genética , Proteômica , Sexismo , Transtorno do Espectro Autista/genética , Serina-Treonina Quinases TOR , Nutrientes , Zinco , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Proteínas dos Microfilamentos
2.
Nat Commun ; 13(1): 2664, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562389

RESUMO

Many synaptic proteins form biological condensates via liquid-liquid phase separation (LLPS). Synaptopathy, a key feature of autism spectrum disorders (ASD), is likely relevant to the impaired phase separation and/or transition of ASD-linked synaptic proteins. Here, we report that LLPS and zinc-induced liquid-to-gel phase transition regulate the synaptic distribution and protein-protein interaction of cortactin-binding protein 2 (CTTNBP2), an ASD-linked protein. CTTNBP2 forms self-assembled condensates through its C-terminal intrinsically disordered region and facilitates SHANK3 co-condensation at dendritic spines. Zinc binds the N-terminal coiled-coil region of CTTNBP2, promoting higher-order assemblies. Consequently, it leads to reduce CTTNBP2 mobility and enhance the stability and synaptic retention of CTTNBP2 condensates. Moreover, ASD-linked mutations alter condensate formation and synaptic retention of CTTNBP2 and impair mouse social behaviors, which are all ameliorated by zinc supplementation. Our study suggests the relevance of condensate formation and zinc-induced phase transition to the synaptic distribution and function of ASD-linked proteins.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/genética , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Comportamento Social , Zinco/metabolismo
3.
Mol Autism ; 13(1): 13, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303947

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction. Here, we have examined the efficacy and breadth of dietary zinc supplementation as an effective therapeutic strategy utilising a non-Shank-related mouse model of ASD-mice with Tbr1 haploinsufficiency. METHODS: We performed behavioural assays, amygdalar slice whole-cell patch-clamp electrophysiology, and immunohistochemistry to characterise the synaptic mechanisms underlying the ASD-associated behavioural deficits observed in Tbr1+/- mice and the therapeutic potential of dietary zinc supplementation. Two-way analysis of variance (ANOVA) with Sídák's post hoc test and one-way ANOVA with Tukey's post hoc multiple comparisons were performed for statistical analysis. RESULTS: Our data show that dietary zinc supplementation prevents impairments in auditory fear memory and social interaction, but not social novelty, in the Tbr1+/- mice. Tbr1 haploinsufficiency did not induce excessive grooming nor elevate anxiety in mice. At the synaptic level, dietary zinc supplementation reversed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) hypofunction and normalised presynaptic function at thalamic-lateral amygdala (LA) synapses that are crucial for auditory fear memory. In addition, the zinc supplemented diet significantly restored the synaptic puncta density of the GluN1 subunit essential for functional NMDARs as well as SHANK3 expression in both the basal and lateral amygdala (BLA) of Tbr1+/- mice. LIMITATIONS: The therapeutic effect of dietary zinc supplementation observed in rodent models may not reproduce the same effects in human patients. The effect of dietary zinc supplementation on synaptic function in other brain structures affected by Tbr1 haploinsufficiency including olfactory bulb and anterior commissure will also need to be examined. CONCLUSIONS: Our data further the understanding of the molecular mechanisms underlying the effect of dietary zinc supplementation and verify the efficacy and breadth of its application as a potential treatment strategy for ASD.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Suplementos Nutricionais , Modelos Animais de Doenças , Medo/fisiologia , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato , Sinapses/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/farmacologia , Zinco/metabolismo , Zinco/farmacologia
4.
Cell Rep ; 31(13): 107835, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610136

RESUMO

Neurofibromatosis type 1 (NF1) is a dominant genetic disorder manifesting, in part, as cognitive defects. Previous study indicated that neurofibromin (NF1 protein) interacts with valosin-containing protein (VCP)/P97 to control dendritic spine formation, but the mechanism is unknown. Here, using Nf1+/- mice and transgenic mice overexpressing wild-type Vcp/p97, we demonstrate that neurofibromin acts with VCP to control endoplasmic reticulum (ER) formation and consequent protein synthesis and regulates dendritic spine formation, thereby modulating contextual fear memory and social interaction. To validate the role of protein synthesis, we perform leucine supplementation in vitro and in vivo. Our results suggest that leucine can effectively enter the brain and increase protein synthesis and dendritic spine density of Nf1+/- neurons. Contextual memory and social behavior of Nf1+/- mice are also restored by leucine supplementation. Our study suggests that the "ER-protein synthesis" pathway downstream of neurofibromin and VCP is a critical regulator of dendritic spinogenesis and brain function.


Assuntos
Medo/fisiologia , Leucina/administração & dosagem , Memória/fisiologia , Neurofibromina 1/metabolismo , Biossíntese de Proteínas , Comportamento Social , Proteína com Valosina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Suplementos Nutricionais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Camundongos Mutantes , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/metabolismo , Sirolimo/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
5.
Cell Rep ; 31(9): 107700, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492416

RESUMO

Synaptic dysregulation is a critical feature of autism spectrum disorders (ASDs). Among various autism-associated genes, cortactin binding protein 2 (CTTNBP2) is a cytoskeleton regulator predominantly expressed in neurons and highly enriched at dendritic spines. Here, using Cttnbp2 knockout and ASD-linked mutant mice, we demonstrate that Cttnbp2 deficiency reduces zinc levels in the brain, alters synaptic protein targeting, impairs dendritic spine formation and ultrastructure of postsynaptic density, and influences neuronal activation and autism-like behaviors. A link to autism, the NMDAR-SHANK pathway, and zinc-related regulation are three features shared by CTTNBP2-regulated synaptic proteins. Zinc supplementation rescues the synaptic expression of CTTNBP2-regulated proteins. Moreover, zinc supplementation and administration of D-cycloserine, an NMDAR coagonist, improve the social behaviors of Cttnbp2-deficient mice. We suggest that CTTNBP2 controls the synaptic expression of a set of zinc-regulated autism-associated genes and influences NMDAR function and signaling, providing an example of how genetic and environmental factor crosstalk controls social behaviors.


Assuntos
Espinhas Dendríticas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Zinco/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Ciclosserina/farmacologia , Espinhas Dendríticas/ultraestrutura , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Comportamento Social , Zinco/farmacologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
6.
Cell Rep ; 29(1): 34-48.e4, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577954

RESUMO

Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.


Assuntos
Potenciais de Ação/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Memória/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo/fisiologia , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA